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EXECUTIVE SUMMARY 

 

The report presents case studies on the application of Condition-Based Maintenance (CBM) 

techniques for the prediction and optimisation of rolling stock maintenance activities.  

 

Two main groups of case studies are explored: i) case study A: various vehicle systems and running 

gear and ii) case study B: wheelset maintenance. In case study A, a wide range of vehicle systems 

and components are analysed, using diagnostic data from Shift2Rail members and partners in 

IMPACT-2 project, to demonstrate the use of prognosis techniques in a CBM model. In case  

study B, the railway wheelset is the main component under analysis, where condition data from 

Fertagus train operating company has been used to demonstrate the application of statistical and 

survival modelling and a Markov decisions process to support the maintenance planning and 

optimisation of wheelsets.  . 

  

The report is structured as following: an introduction on the CBM model is provided in chapter 1, 

briefly reviewing techniques to support smart maintenance discussed in previous deliverables 2.1 

and 2.2; in section 2 the vehicle systems and running gear case studies are explored using different 

statistical and machine learning techniques to analyse diagnostic data from rolling stock systems, 

providing a basis to support prognosis of the condition of several subsystems in vehicle systems; 

in section 3, the Fertagus train operating case study is presented, focusing on the wheelset 

maintenance component, using Linear Mixed Models, Survival Models and a Markov Decision 

Process (MDP) approach to derive an optimal maintenance decision map. This decision map is 

used to trigger maintenance decisions. Moreover, decision support models, i.e. a tactical 

maintenance planning model and an operational maintenance scheduling model are used to 

assess maintenance feasibility of a maintenance strategy. Both models are adapted to the Fertagus 

case study for a set of typical maintenance activities, including wheelset turning activities. A 

discussion is also provided on the precision associated with laser inspection, compared with 

manual and turning equipment. In section 4, a discussion on the CBM implementation is provided, 

pointing out the main lessons learnt from the case studies explored in sections 2 and 3. Guidelines 

and barriers to implementation are also identified and a final subsection on highlights of data inputs 

for impact assessment is also given. Finally, the main conclusions of the document are pointed out, 

showing the potential applicability of the CBM approach in other railway systems. 

 

The application of the CBM techniques and architecture to a wide range of vehicle systems and 

components using real data from specific train fleets showed that such approaches and techniques 

can support maintenance decision as well as prognosis and failure prediction. It also allowed to 

discuss potential impacts and benefits using life-cycle techniques towards more informed condition-

based maintenance regimes.   
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1. INTRODUCTION 

 

As discussed in deliverable D2.2, comprehensive maintenance decision-making processes have 

been developed in the transport sector and the MSG-3 methodology is a well developed process 

in the aviation industry. Such concepts and methodologies had been explored and discussed in 

deliverable D2.1, with an example case study on a typical system of an airplane. Deliverable D2.2 

concluded that the MSG-3 methodology could potentially provide a useful basis for the definition 

and development of maintenance actions to support a condition-based maintenance (CBM) 

strategy for rolling stock.       

 

The implementation requires applications of techniques from data science and condition monitoring 

to support the CBM system. In the system, two main goals are modelled: i) condition monitoring 

(CM), which mainly consists of data acquisition and storage of variables to describe the actual 

condition of a component/system and allow the identification of the root causes of system failures 

and ii) maintenance decision supporting, which consists of failure prognosis, development of 

guidance and evidence to support maintenance decisions, and continuous improvement of 

maintenance decisions and their impact from other perspectives, e.g., prolonged asset life and 

savings in life-cycle costs. 

 

A comprehensive procedure for condition-based maintenance of rolling stock was described in 

deliverable D2.2, describing the proposed techniques to support predictive and preventive 

maintenance and the major tasks in the CBM system, namely: 

- Condition monitoring and data collection; 

- Data cleansing, pre-processing and signal processing; 

- Feature selection and extraction; 

- Statistical modelling; 

- Fault diagnosis and prognosis; 

- Maintenance decision, planning and optimisation. 

Data processing and feature extraction in complex systems such as railway vehicles requires using 

different statistical models to better describe trends and predict the behaviour of subsystems or 

components, decomposing many times such information in frequency domain. Several techniques 

were described in deliverable D2.2, with discussion on data visualisation and data driven prognostic 

methods (e.g. Markov Chain models, Hidden Markov models).  

 

In parallel, three critical challenges for CBM to be successful were identified. First, a system health 

indicator must be determined or defined, using for example dimension reduction techniques  

(e.g. Principal Component Analysis). Secondly, accuracy and interval of condition monitoring 

should be ensured, requiring inspection and sensing technologies (e.g. laser equipment) and using 

predictive techniques such as Artificial Neural Networks. Finally, condition limits must be defined, 

which might change during the life-cycle or operation time of the component or subsystem. 
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Supporting maintenance decisions, as the second goal of a CBM system, requires analysis 

techniques that can derive optimal maintenance strategies given the expected evolution/transitions 

of the condition of a given subsystem or components. In that sense, Markov Decision Processes 

are controlled stochastic processes that can be applied to derive an optimal maintenance action 

map. This is achieved using wheelset condition data for the case study of Fertagus train operating 

company in Section 3.3 of this report. A tactical maintenance planning model and an operational 

scheduling model are also applied to that case study, supporting the assignment of maintenance 

activities to each train unit, given several constraints (e.g. depot).  

 

The case studies presented in this final WP2 deliverable demonstrate the application of the 

developed CBM techniques for the prediction and optimisation of maintenance for a range of rolling 

stock components/systems. 
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PART I: PROGNOSIS 

2. USE OF ON-TRAIN DIAGNOSTIC DATA IN CBM 

In rail operation, maintenance is a significant proportion of the total operational cost. In the SMaRTE 

research project, we have explored several approaches of CBM using prognostic models to support 

maintenance decisions based on the predicted condition of a component/system. Although an ideal 

CBM approach is directly based on condition data (e.g. data which describes the actual condition 

of the system/component at a particular period in time), and in which a prognostic-based decision 

support for CBM is not an extensively explored area, the objective of the research described in this 

section of the report is to develop methods to deal with the specific challenges associated with the 

use of diagnostic data for CBM, such as variations in data quality. This will be used to predict the 

occurrence of specific system diagnostic events (including warning and failures) and to 

continuously update maintenance-related decisions.  

 

Overall, a framework of a CBM process (shown in Figure 1 below) has been developed which 

focuses on dealing with real-time diagnostic data which is gathered in high frequency, developing 

prognostic models for the estimation of the remaining useful life (RUL) or remaining life distribution 

(RLD) and providing recommendations for future CBM. In deliverable D2.2, SMaRTE already 

reviewed some techniques (including some commonly used statistical analyses, machine learning 

techniques and Markov-based optimisation of maintenance plans). The focus of this deliverable is 

how these techniques can be applied into real systems. As highlighted in the Figure 1, the case 

studies will demonstrate the processes in two stages of a typical CBM process, namely Prognosis 

and Decision support.  

 

 
Figure 1: Proposed CBM process (adapted from Voisin et al. 2010) 
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The implementation of the prognostic-based approach in different CBM case studies is not 

straightforward because of the diversified characteristics of data in each system. Moreover, our 

method often needs to be combined in order to cover the prognostic and decision-making 

requirements of CBM applications. Hence, there is a need for systematically describing the 

methods’ characteristics and supporting the selection of the most appropriate combinations for the 

needs of specific CBM applications. 

 

Hence, research works dealing with decision support for CBM usually develop a model of analysing 

and processing the historical data available, apply this prognostic model online on the real-time 

data streams and, based on the derived on-line prognosis, develop decision methods in order to 

provide prognostic-based recommendations. Specifically, prognostic methods are applied first and 

decision methods are then used in order to provide maintenance recommendations as shown in 

Figure 1. 

 

In this first case study; diagnostic data from a range of vehicle systems (e.g. automatic sliding 

doors, air conditioning unit, braking and traction systems) have been analysed to demonstrate the 

use of prognosis techniques within a rolling stock maintenance environment. These techniques can 

be combined with the condition-data driven techniques and decision support processes described 

in Part II of this report to developed a CBM-model for rolling stock. 

 

2.1 ON-TRAIN DIAGNOSTIC DATA 

Unlike fault diagnosis, prognosis is a relatively new area because traditionally prognostics was 

viewed as an add-on capability to diagnosis, however it has become an important part of the CBM 

system. Prognosis assesses the current and historical status of a system and predicts its remaining 

life based on features that capture the gradual degradation in the operation of the system. 

Predictive capability is critical to improve availability, plan successful missions, schedule 

maintenance, and reduce maintenance costs.  

 

Ideally, when designing a condition-based maintenance system to provide early warning of failures 

and inform maintenance planning, it is clearly advantageous, and a better use of resources, to have 

the vehicle diagnostic system obtain information about the failure symptoms by using sensors 

already installed on a vehicle to capture the failure information. Retro-fitting sensors to existing 

vehicles can be prohibitively expensive requiring integration into a system that, for all intent and 

purposes, are likely closed for such upgrades. At this stage it would be beneficial, and which is 

presently not common, to add higher layers of prognostics to on-train systems to take full advantage 

of the rich data structure and inherent engineer domain knowledge that is already present and 

accessible via the on-train diagnostic system. 

 

Modern rolling stock are typically equipped with an on-board diagnostic system that continuously 

monitors the operation of critical systems, as illustrated in Figure 2, and generates specific event 

data when abnormal operation or a specific event is observed. The system has what can be 

described as an event-driven architecture. This is programmed to record fault diagnostics 

information efficiently. Typically, diagnostic information is used retrospectively when the vehicle is 
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called for maintenance actions; however, if the data can be accessed in real-time it could, feasibly, 

be used to predict an impending failure with sufficient response time to allow remedial action to be 

planned before the event becomes terminal. 

 

 
Figure 2: On-train diagnostic system (Source: Schulte-Werning et al. (2016)).  

 
Off-train monitoring configurations have significantly different hardware and programming 

characteristics to those of on-train systems. Data capture and processing is usually implemented 

in a manner very specific to the component being monitored. Sensors, microcontrollers, sampling 

frequencies, duty cycles, memory and data extraction are all designed to monitor the condition 

being observed. Power, in these circumstances, is usually limited enforcing stringent data 

transmission and power supply constraints. 

  

2.1.1 DATA COLLECTION AND FORMATTING 

On-train monitoring systems, as previously mentioned, are event-based with differing operational 

constraints. Power is not usually a limited commodity but other parts of the monitoring system, such 

as memory and sensory data, can be limited due to the wide range of vehicle systems being 

observed. The on-train diagnostic system is capable of capture over 5000 diagnostic codes that, in 

combination, are simultaneously gathering operational data on a wide range of the vehicle systems 

from the traction and braking system to the air conditioning unit and automatic doors.  

 

Modern train are equipped with a diagnosis system, which consists of a range of logical devices 

and sensors/actuators in order to collect and transmit current faults/events and environment 

variables to a data logger via the multi-function vehicle bus (MVB). The systems of interest are 

monitored by the diagnosis system throughout a historical period of observation. Among the data 

captured and stored in a diagnosis system, it is ideal that both sensor and event data are available 

for prognosis. However, it is more often that only event data is available. The severity of an event 

and/or how safety critical the system is will dictate how the system records the data. These event 

data herein are defined as a collection of data items containing at least a time stamp, a failure/event 

code and eventually a descriptive text. 
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Figure 3: Overview data generating resources. 

 

It was identified early in the SMaRTE project that there were going to be some difficulties in 

obtaining condition and diagnostic data from fleets operated by project partner LUL. To mitigate 

this risk, data sources provided by IMPACT-2 WP6 partners were utilised in the research (under 

Shift2Rail Cross Cutting Activity Grant Agreement 777513).  

 

Data from a range of vehicle fleets were provided by IMPACT-2 partners to support the 

development of analysis techniques for the prediction of future component/system failure. This 

mainly included diagnostic data, however some sensor data and information on maintenance 

activities were also provided. The data provided by IMPACT-2 covered regional, suburban,  

double-decker and high-speed electric multiple units (EMU) and a number of systems  

(e.g. traction/braking system, doors and air conditioning unit). Following some initial problems 

related to the collection, formatting and quality of the data, the data was pre-processed using 

statistical analysis techniques and cross-referenced with maintenance records as detailed in 

Section 2.2. 

2.2 ASSESSMENT METHODOLOGY 

The overall process of prognostic-based approach adopted in the research is shown in Figure 4 

below. This methodology has been applied to the assessment of diagnostic data for a regional and 

high-speed EMU in Section 2.3 and 2.4. 

 

To support this a range of data processing and analysis techniques were applied to the diagnostic 

data. 

I. Selection of failure(s) of interest and relevant diagnostic codes based on: 

a. experience of depot staff and/or known codes which result in maintenance 

interventions 
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b. design of on-board diagnostic system architecture (e.g. failure of safety critical 

components) 

c. statistical analysis of diagnostic codes / events (step II below) 

II. Statistical analysis of diagnostic codes to characterise failure(s) of interest 

a. frequency of occurrence, time activated, cumulative distribution  

b. relationships between diagnostics codes and measured environmental variables 

III. Prognostic model to forecast future activations  

a. linear/non-linear regression 

b. neural networks 

IV. Early warning of potential failure 

o support maintenance planning (rather than corrective/unscheduled maintenance) 

o maintenance management system 

 

 
Figure 4: Prognosis-based assessment methodology 

 

2.3 CASE STUDY OF REGIONAL EMU 

The first type of train selected in this case study is a regional EMU, known as Class 440 Coradia. 

These were manufactured by Alstom and operated by Deutsche Bahn (DB) since going into service 

over a decade ago. The Class 440 traction control unit (TCU) and retractable door step were initially 

selected following discussions with DB Regio AG's product line support and maintenance 

departments, however the focus of this case study is the TCU. 

 

Work instructions for scheduled preventive maintenance exist for both components in the current 

maintenance plan of DB Regio AG. These work instructions contain defined work contents, which 

must be carried out at fixed mileage limits within planned maintenance periods. The work 

instructions with defined work contents, limit values to be complied with and mileage limits have 
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thus far been based on manufacturer specifications, calculations, experience from maintenance 

and operation etc. The work instructions apply to the entire fleet of the relevant vehicles of an RU 

or groups of vehicles operating under the same conditions. The work instructions, including all 

specifications, therefore do not take into account the individual condition of a specific vehicle 

component. 

 

The planned introduction of a data-based monitoring system is an attempt to determine the actual 

condition of individual components and thus define maintenance requirements individually for the 

components. The data and signals already available in the vehicle or component are used for this 

purpose. They are assigned to the respective functions or possible causes of faults in order to be 

able to make statements about the actual condition of the component using analysis methods and 

pattern recognition. The ultimate goal is to establish condition-based rules for the work to be carried 

out and thus to partially or completely transfer the original work instruction from the  

above-mentioned scheduled preventive form into a condition-based maintenance work instruction. 

 

2.3.1 SELECTION OF FAILURE/EVENT OF INTEREST 

A rail vehicle consists of many systems which are monitored for the purpose of operation and 

maintenance. The selection of appropriate systems was performed in consideration of the following 

criteria: 

 Relevance for maintenance (scheduled or unscheduled/corrective) 

 Relevance for safety, reliability or comfort of the passenger trains 

 Availability of relevant data for CBM application 

 

Considering the recommendations from DB and initial interrogation of the entire set of event data, 

the TCU was selected as it is subject to frequent unplanned/corrective maintenance and a certain 

amount of diagnostic and maintenance data was available for the case study.  

 

In the data set, the following field data available for the prognosis: 

 Event logger (fault records reported during operation and resulting in maintenance): 

o Reference period of 4 years: 2015 – 2018 

o Number of trains: 152  

o 32 types of reported events for TCU 

o Total number of reported events: 2401 for TCU 

 Maintenance records (completed maintenance activities): 

o Reference period of 4 years: 2015 – 2018 

o Number of trains: 152 

o 59 types of corrective maintenance actions for TCU 

o Total number of corrective records: 938 for TCU 

 

There will be many events occurred during the operation of a system. In this case study, there are 

32 types of events for the TCU. The objectives of “Selection of failure(s) of interest” are: a) to have 

an overall understanding of the system in terms of the occurrence of failures/events; b) to select 

candidates of further analysis and prognosis. There are many approaches in order to select the 
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failure(s) of interest. Recommendations and suggestions from maintenance engineers is the most 

important piece of information for our analysis. DB’s maintenance engineers were consulted to 

identify which failure(s) are most concerning (from a safety and maintenance resource perspective). 

In addition, maintenance/failure reports from the depot were also critical for us to have a focus 

since there may be hundreds of faults on a fleet during an inspection cycle. The maintenance/fault 

report from DB has a following structure: 

 

Field Name Description Example 

Erledigungsstatus aus ZIIS_AV_P_F_K Completion status E 

Status des Schadens Degree of damage F 

Erfassungsdatum Entry date 04/01/2015 

Erledigungsdatum Completion date 06/01/2015 

Schadcode Fault code FA38 

Fehlerklasse Fault class 3 

Materialkennzeichen Material ID J 

Schadcodetext Fault text ASG 1 gestört 

Kurztext Short description of fault Antriebsteuergerät, 

Störungssuche 

Langtext Long description of fault Speedsensor Radsatz 4 

defekt (=WR1 

Speedsensor2) 

IH-Werk Depot ID 12LR 

Aktuelle Fahrzeugnummer Vehicle ID 94800440203-8 

Arbeitsvorrat-Nummer Maintenance activity number 225897054 

Codegruppe-Arbeit Activity code TBGCBCT 

   

By analysing this fault reports, the most significant faults can be identified which result in 

unscheduled/corrective maintenance prior to the regular service interval (e.g. every ~52km). 

 

However, one of the most effective approaches for the selection of failure(s) of interest is to analyse 

the historical data. Figure 5 shows the occurrence of all failures/events over the period of the 

observations. This approach can provide useful information to:  

 Identify the coverage of the data over the analysis period. As discussed in previous 

deliverables, data availability is one of project risks and limitations of CBM. This initial 

analysis helped us to understand the coverage of historical data and the selection of data 

for the further analysis and prognosis. 

 The potential indication of a group of failures/events which are highly correlated. Based on 

experience, events/failures of a system may have some interdependencies in general.  

 

In Figure 5, it can be seen that a) there are some gaps in the dataset, for example there is data 

missing for the first and third quarter of 2016, however we have some good continuous data over 

2015. For our analysis, it is better to work on data from 2015 for the prognostic model; b) The 

occurrence of failure codes 19048, 19049, 19051, 19052, 19056, 19057 shows some potential 

correlation in the chart. This requires some further analysis to understand if these failure codes are 

proposed to be correlated (by the definition and design of diagnosis system) or there is a “true” 

dependency among these codes. 
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2.3.2 CHARACTERISATION OF FAILURE/EVENT OF INTEREST 

After consulting the maintenance engineers from DB, a group of failure codes (i.e. 19048, 19049, 

19051, 19052, 19056 and 19057) were selected which represent an event with the inverter “inverter 

disturbed” accompanied by the “disturbance of ASG traction control unit”. As designed in the 

diagnosis system, it makes sense that these codes are strongly correlated which means one event 

occurs and the other events will be captured in a short period. However, further analysis of this 

correlation is needed, i.e. which event is primary and which are just followers.  
 

 
Figure 5: Failure codes occurrence 
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Meanwhile, we also obtained information from maintenance engineers that failure code 19056 

(“wheel diameter difference too high”) presents the reason for a traction disturbance, which would 

be a clear indicator for maintenance. The occurrence of specific codes is coloured in red to highlight 

19056, which is the most significant failure in the group. At step II of Figure 4, “characterisation of 

failure(s) of interest”, there are two tasks to do to identify the relevant characteristics of the 

occurrence of these codes: 

 

 The first task is to visualise the timeline of occurrence of codes over the period, shown in 

Figure 6. This can provide information of when the event is on and how long the event lasts. 
 

 
Figure 6: Visual timeline of code occurrence 

 

In the case study we found that these codes/events are almost synchronized – they arise and 

disappear at the same time (or the delay is not captured). Ideally, we expected that such an analysis 

can answer the question of which event is the primary and which events are the followers.  

 

 The second task is to visualise the trend of occurrence, shown in Figure 7. It can provide 

some information of how fast the events’ occurrences are increased over the analysis 

period. 
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Figure 7: Trends in failure code occurrence 

 

Most importantly, the projection here tells us that the occurrence within the group splits further into 

two groups. The upper part of the plot indicates the trend for inverter no. 1 (code 19048, 19049, 

and 19052) which is shown to be more prone to failure than inverter no. 2 (code 19051, 19056, 

19057). It also provides us the information that the rate of occurrence increases after a certain point 

and are roughly at the same rate. In reliability engineering, we know that the system’s failure rate 

is a bit higher than the rate in the later stage of useful life (the bath-curve). So it is reasonable to 

believe after the first period of time these inverters were working in a stable condition. Also, within 

the time window of the historical data we did not observe a dramatic change in occurrence rate. 

 

2.3.3 PROGNOSTIC MODEL OF FAILURE/EVENT OF INTEREST 

A reasonable prognostic model is built on the rigorous analysis of historical data. Using this 

prognostic model, we are then able to forecast the occurrence of an event/failure. In this case study, 

we have tried two types of predictions: the prediction of occurrence based on a linear regression 

model on accumulated occurrences and the prediction of occurrence based on a recurrent neural 

network model. 

 

 Prediction of occurrence based on a linear regression model on accumulated occurrences 
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The fundamental assumption of the prediction using a linear regression model is that the 

occurrence of an event is distributed evenly over a period. In our case study, we identified that the 

total occurrences of events of interest increase steadily after the first period (i.e. after June 2015), 

and it is reasonable to assume that all these failures will arise constantly for the near future.  

 

 
Figure 8: Linear-regression model 

 

Based on the prognostic linear model, we can estimate when the total number of occurrences of 

these failures reaches a specific threshold, which determines when the vehicle needs to go to depot 

for service or maintenance. 

 

 Prediction of occurrence based on a recurrent neural network model 

 

Creating a recurrent neural network (RNN) prognostic model and using it to predict the occurrence 

of events is another approach that has been trialled during the research and included in this case 

study for both regional and high-speed EMU (Sections 2.3 and 2.4). Further details of the RNN 

model can be found in Section 2.4.5. Compared with prediction based on a linear model, the 

fundamental difference is that it is not based on the assumption that the events to predict will 

happen constantly over a period. Shown in Figure 9, the selected group of failures did arise 

irregularly over the period.   
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Figure 9: Irregular occurrence of failure codes 

 

There are two approaches to predict the occurrence of failure codes: the first one is to predict the 

number of occurrences in next a few days; and the other approach is to predict when the codes 

will arise and disappear in next a few days. 

 

1. Prediction based numbers of occurrence in next period 

 

To predict how many times the codes will arise, we need to preliminarily process the data to know 

how many times the events are recorded in the historical data. The data is aggregated as 

summarised below: 

 

Event_date F_19048 F_19049 F_19051 F_19052 F_19056 F_19057 

…… 

22/07/2014 2 2 2 3 2 2 

23/07/2014 3 3 3 3 3 3 

24/07/2014 4 4 4 4 4 4 

25/07/2014 7 6 7 7 7 7 

26/07/2014 1 1 1 1 1 1 

28/07/2014 5 5 5 5 5 5 

….. 
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Meanwhile, we can calculate a correlation efficiency matrix to show how these failure codes are 

correlated in the history. 

 

 

 

 
Figure 10: Correlation efficiency matrix 

 

It has been identified that failure code 19056 is more correlated with codes 19049, 19051, and 

19057, and slightly less correlated with codes 19048 and 19062. 

 

After the statistical analysis, a RNN model was built to feed the historical data into the model so 

that the model can learn from the historical data and search for patterns. After cleaning the historical 

data (omitting the days that records are missing), we have 895 rows remaining. 

 

Some intimal parameters for the neural network model are set as below: 

 lookback = 28 — Observations will go back 28 days. 

 steps = 1 — Observations will be sampled at one data point per day. 

 delay = 5 — Targets will be 5 days in the future. 

The historical data is scaled by using its standard deviation and mean.  

 

Mean: 

F_19048 F_19049 F_19051 F_19052 F_19056 F_19057 

0.02369931 0.06957364 0.05434398 0.02230618 0.03565942 0.03378029 
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And Standard Deviation: 

F_19048 F_19049 F_19051 F_19052 F_19056 F_19057 

1.0313293 0.9966763 1.0266073 1.0215954 1.0307834 1.0312577 

 

When using neural networks, we choose mean absolute error (MAE) as the loss function to train 

the neural networks. Then we can have a benchmark of prediction by calculating the MAE without 

any prediction. In the case of code F_19056, the MAE is 0.4757996. Because the historical data 

has been normalized to be centred on 0 with a standard deviation of 1, this MAE isn’t immediately 

interpretable. It translates to an average absolute error of 0.4758 x F_19056’s std: 0.5, which 

means the prediction is within an error range of ±0.5 (the difference between the number of events 

recorded and predicted). 

 

 
Figure 11: Validation of NN prediction model 

 

Figure 11 shows the loss (MAE) of training and validation progress when the RNN is fitted to the 

data. In the dataset we feed into the RNN model, we split the first 70% worth of data for training, 

and use the remaining 30% of data to validate the model. In the Figure, we can see that the RNN 

model digested the training data quickly, and the MAE is dropped from 0.53 to 0.3 after 20 rounds; 

however, the validation based on the rest 30% data samples does not follow the trend with a loss 

of approx. 0.4.  

 

After making the neural network model learn the historical data, the MAE of learning set is down to 

0.2944, which is better than the approach without neural network model. The prediction results are 

shown in Figure 12 below. 
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Figure 12: Prediction of failure occurrence 

 

There are several interesting observations from the figure of RNN fitting history (Figure 11) and the 

prediction results (Figure 12). 

 The loss in the training and validation data crosses at around 0.4 and the loss of validation 

does not follow the trend of the training data. This could be caused by several factors: 1) 

the RNN model is set to learn from 28 units of historic data in order to predict the situation 

for the next 5 units. However, the actual data may not have a periodical pattern; 2) the first 

70% of the data may have different characteristics (e.g. different periodical pattern) to the 

remaining 30%. After further investigation, we are more confident that the results of our 

predictions are not as realistic as possible (although the actual MEA, e.g. the difference 

between the actual recorded events and the predicted number of occurrences, is nearly 1 

i.e. if predicted event X will happen n times at a particular day and actually the number of 

event X recorded is between n+1 and n-1) because the data we are holding is not 

continuous so that the characteristics of the time series of event X will be different and 

therefore the RNN model cannot find the “real” pattern. This highlights the importance of 

data quality, especially the continuality of data, in event-based predictions. 

 By scanning the entire data, a preliminary step is to manually explore any obvious periodical 

pattern in the data. So that the parameters (28 days and 5 days in our case study) can be 

selected wisely. One of reasons why our experiment in this case study does not provide a 

“good” enough result is that the selection of the parameters for the RNN model are not 

appropriate. It can be improved by changing the values of these parameters. However, 

several values of the parameters (e.g., 12 days and 3 days) were trialled, however we were 

still unable to show a good prediction due to the reasons identified above.   
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2. Prediction of when/if the codes will remain active of disappear in next a few days 

 

As shown in the historic data, an event code can remain active or re-appear if the fault persists or 

disappear if the fault is corrected during operation. Based on the historical data, it was attempted 

to predict the occurrence of events based on when the events appeared and disappeared, as 

shown in Figure 13 below. 

 
Figure 13: Occurrence of events from historic data 

 

Because there are gaps in the data set, we attempted to clean the data in a different way, and the 

processed data looks like: 

 

Event Date F_19048 F_19049 F_19051 F_19052 F_19056 F_19057 

2014-07-22T01:07:45Z 1 1 1 1 1 1 

2014-07-22T01:08:29Z 0 0 0 0 0 0 

2014-07-22T06:43:20Z 0 0 0 1 0 0 

2014-07-22T06:49:11Z 0 0 0 0 0 0 

2014-07-22T18:10:45Z 1 0 0 1 1 1 

2014-07-22T18:10:46Z 0 1 1 0 0 0 

2014-07-22T18:11:27Z 0 0 0 0 0 0 

2014-07-23T15:45:09Z 1 0 0 1 1 1 

…… 
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Similarly, we calculated the correlation matrix illustrated in Figure 14. 

 

 
Figure 14 Correlation matrix 

 

Finally, we feed the historical data into neural networks, and obtain the following results. 
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Figure 15: Prediction of failures 

 

Similar to the discussion in our first experiment, it shows the same phenomenon. Compared with 
two attempts of using neural networks, the second attempt is not as good as we had expected. 

 

Compared with two attempts of using neural networks, the second attempt is not as good as we 

expected. After having a deep analysis, there are several things which may affect the quality of 

using neural networks in prediction of failure codes: 

 Nature of failure – Sometimes the occurrence of a failure does not have any periodic pattern, 

thus it is hard to use recurrent neural networks to search.  

 Data availability and quality – It is an obvious reason in our case that there are several gaps in 

the data set.  
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2.3.4 EARLY WARNING IN MAINTENANCE MANAGEMENT 
SYSTEM 

 

 
Figure 16: Maintenance programme 

 

The early warning of a potential imminent failure will provide the opportunity to adjust the 

maintenance programme so that corrective action can be scheduled rather than waiting until a 

critical failure which would rely on corrective unscheduled maintenance.  

 

Based on the outputs from the prognostic model, the potential occurrence and projected date or 

mileage of a failure code reaching the specified threshold can be compared to the current 

maintenance programme, with the aim of adjusting or optimising the maintenance plan where 

possible. According to the current maintenance programme, as summarised in Figure 16 above, 

the vehicle is typically inspected every 20,850 km and major (scheduled) services carried out at 

every 52,500 km. Therefore, the objective of the prognosis techniques is to forecast the failures’ 

occurrence in the next 20,850 km. If the occurrences of several failure codes reach the specified 

threshold and need to be serviced in a particular service exam (e.g. IS 510, IS520, etc), a new 

maintenance programme will be created suitable for the needs of that particular fleet.  
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2.4 CASE STUDY OF HIGH-SPEED EMU 

The second case study was conducted in collaboration with Siemens Mobility (GmbH) who are one 

of partners in the cross-cutting IMPACT2 project. The case study investigated the potential use of 

the diagnostic data in a condition-based maintenance regime using advanced predictive techniques 

employing artificial intelligence. The assessment methodology detailed in Figure 4 was also 

followed for this case and included: 

 Diagnostic data structuring and mapping to diagnostic data architecture 

 Identification and mapping of code severity based on implied safety risk and maintenance 

planning within the diagnostic data architecture 

 Correlation of maintenance actions in response to ‘finally broken’ codes from the 

maintenance provider for the ICE3 fleet 

 Observation of data using statistical analysis of diagnostic codes to identify patterns and 

extract features for use in predictive modelling techniques 

 Methods and techniques for future failure event forecasting 

 Implementation of the prediction methods for the use in fleet maintenance planning 

This case study benefited from two datasets and a data architecture describing the on-train 

diagnostic data for three systems on the ICE3 fleet; air condition unit, traction system and braking 

system. The ICE3 or intercity-Express 3 is a family of high-speed EMU trains operated and 

maintained by DB. The dataset consists of the following information: 

1. On-train diagnostic data containing 34 parameters for the ICE3 fleet containing 55 vehicles. 

The diagnostic data contained diagnostic event information from January 2016 to 

December 2017. 

2. Vehicle depot visits according to ‘finally broken’ codes with high maintenance response 

classification linked to 3 depots used to maintain the vehicles by the maintenance provider 

DB. This dataset includes time the vehicle was in the depot, which ‘finally broken’ diagnostic 

code the depot visit was in response to and what mileage the depot recorded when the 

vehicle was in for maintenance action over the same period in time. The dataset contained 

maintenance information for 48 of the 55 vehicles in the ICE3 fleet. 

3. Finally, the diagnostic data architecture; discussed in more detail in Section 2.4.1. This 

contains detailed information about each of the approximately 5000 codes the on-train 

diagnostic system records as failure symptoms or failure events. The dataset contained 

information about the severity of the diagnostic codes in relation to a maintenance response 

classification. 
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           Figure 17: Diagnostic Data Architecture 

2.4.1 DIAGNOSTIC DATA ARCHITECTURE 

The observed diagnostic data contains a number of parameters that are collected when an event 

is triggered. The train event recorder attaches 34 of these parameters to each failure event. To 

develop a usable data structure, a small subset of parameters such as the fleet and vehicle 

designation, the event failure code, timestamp and other useful parameters were mapped to the 

diagnostic data architecture shown in Figure 17 above. The combination of event data and mapping 

of the diagnostic data architecture delivers actionable structure to the event codes based on domain 

knowledge contained in the diagnostic data architecture itself. 

 

As discussed in the introduction, the structure of the diagnostic information has an architecture 

designed to be used retrospectively. In normal operation, the events occur while the vehicle is in 

operation between depots. The data collected in normal operation is specified as a parameter in 

the diagnostic report and attributed the value of 1 for ‘mode of operation’ described as operational 

mode. A value of 2 in ‘mode of operation’ column indicates that the vehicle is in diagnostic mode, 

which generally occurs during a maintenance or system testing activity. When the vehicle arrives 

into the depot the information is downloaded. At this time the data is used to determine the likely 

cause of failure. For on-train system data, filtering out when the vehicle is in some form of diagnostic 

mode (e.g. within the depot rather than in operation) allows large quantities of data to be removed 

from the analysis and used in the subsequent prediction methods.  

  

In the case of the system encountering a threshold breach, a subsystem event triggers recording 

of specific environment variables. These variables which are continuously monitored by the  

on-train diagnostic system might include the measurement of some physical conditions of the 

Maintenance Response
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system, for example pressure, temperature, vibration etc. so that the information is preserved for 

future fault diagnosis. This feature is a pattern or programmed behaviour of the diagnostic system 

that can be employed to determine the severity of the failure code and to forecast future failure 

events. An example from the braking subsystem is shown in Figure 18 below. The figure shows 

two high priority codes for the braking system over the same period which results in the vehicle 

being called in for maintenance actions. The three plots on the left show the cumulative sum of 

event codes for the ‘rear wheelset not turning’ and its active duration; the speed of the vehicle and 

the pressure reading from sensors associated with the failure event are plotted on the bottom plot. 

The three plots on the right show a failure event code occurring during the same period for the front 

wheelset. This illustrates the recording of diagnostic failure information. 

 

 

Figure 18: Diagnostic System Behaviour Pattern 

The maintenance response classification, at the centre of Figure 17, is assigned to each failure 

code specified within the data architecture and will typically specified during the design of the 

diagnostic system. In the diagnostic data architecture, the description of the maintenance response 

classification the two categories are: Maintenance Premium Standing (MP1) and Maintenance 

Schedule Volatile (MP2); the first carries a greater warning severity due to its consequences to 

impact the vehicle operation directly and the second category is a lower severity impacting the 

maintenance schedule on intermittent basis. This categorisation, along with the environment 

variable, can be used to prepare for and deal with failures on the arrival of the vehicle during the 

next depot visit. At the time the event occurs shortly after a period of assessment by the prediction 

algorithms, if prior warning is delivered to the depot with sufficient information about the failure, it 

is possible the depot could respond to the event in a proactive manner rather than the current 

reactive method. 
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2.4.2 DATA SCIENCE METHODS WITH ENGINEERING DESIGN 

Data-driven models can incorporate a range of techniques, from programming to statistical 

analysis, to machine learning and artificial neural networks. These techniques can be applied to 

the data collected by the on-train diagnostic system. In order to apply supervised machine learning 

methods, known failure data is essential (e.g. the occurrence of event codes that have resulted in 

maintenance actions).  

2.4.3 FLEET DEPOT VISITS BY ‘FINALLY BROKEN’ DIAGNOSTIC 
CODES 

The diagnostic data architecture provides a severity value for each event code based on the 

importance from a maintenance perspective or safety risk. These codes have a value from 1 to 6; 

with 1 being most severe and 6 being the least important in terms of maintenance action. The two 

categories, discussed above, exist in the diagnostic data architecture mapped to each code. This 

is useful as it can be used to classify the data and attribute a severity to the code and its occurrence 

in time. 

 

Figure 19 shows the number of depot visits on the y-axis for vehicles in the fleet with maintenance 

history for the selected ‘finally broken’ codes. The type of system codes that the vehicles were 

called in for are shown by the three colours in the legend (e.g. braking system (Bremse), traction 

system (ASG) and air conditioning unit (Kliminage)). In terms of severity level, mentioned above, 

these codes have a severity value of greater than or equal to 2. 
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Figure 19: Fleet Depot Maintenance Visits by Diagnostic Code 

For the subset of ‘finally broken’ codes, it can be seen that the air condition (AC) subsystem 

accounts for the majority of the depot visits with traction and braking systems less affected when 

the entire fleet is considered. However, some vehicles can be seen to have very low depot visits in 

total. Provided the sufficient operational data is available, a vehicle with no depot visits can be 

considered as working within normal operating levels and so can be used in what is known as 

unsupervised learning methods. In this learning approach ideal condition data, where the system 

is running within a known condition, is used to teach the system to recognise when the vehicle is 

running well. Therefore, when the method sees new data that is different to that it was shown 

previously it recognises it as being abnormal.  

 

In data-driven techniques such as machine and deep learning the quality and quantity of data is of 

upmost importance. Alongside the diagnostic data and its mapping to a structured architecture, it 

is important to have failure data that shows good correlation with abnormal system behaviour. The 

mapped diagnostic data, cross correlated with the depot visits is shown in Figure 20 for the braking, 

traction and AC subsystems. Approximately 360 event codes are associated with these three 

subsystems. The dimensionality of the data with this many codes is prohibitively high. Methods to 

reduce the dimensionality using principle component analysis are common in machine learning 

methods. They allow predictor variables to be selected that give good responses to training of the 

classifiers. However, these methods behave well in structured data with constant sampling and 

continuous monitoring of physical quantities. In contrast, the vehicle diagnostic system records 

events in a random, non-linear manner dependant on the breach of installed thresholds. Figure 20 

shows the results from a detection algorithm designed to extract all mutually coherent codes in 
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terms of temporal distance for the ‘finally broken’ code subset. It shows the number of depot visits 

on the z-axis with frequency of ‘finally broken’ diagnostic codes, in adjacent columns, correlated in 

terms occurrence in time. The detection algorithm extracts a reduced code set allowing meaningful 

pattern recognition and feature selection to be implemented before building a recurrent neural 

network to predict the occurrence of future failure events. Each instance in the bar chart can be 

thought of as an opportunity for teaching a neural network the behaviour to recognise in classifying 

an event for maintenance action. 

 

 

Figure 20: Depot Visits Root Cause Analysis 

The number of event codes directly evidenced to depot reported failures are significant and will 

inform the validation datasets to train the system to recognise, in real-time, impending failures for 

all the subsystems characterised. It is likely that if more subsystems, preferably all, are included in 

the analysis it will show greater visibility of the vehicle behaviour and links between subsystem can 

be discovered.  

2.4.4 BUILDING FEED FORWARD NEURAL NETWORKS 

Machines can be taught to recognise patterns by feeding forward information about the relationship 

between the inputs to the outputs through hidden layers of neurons, seen in the left hand illustration 

in Figure 20. The human brain is a pattern recognition machine built on a huge natural neural 

networks. Humans can learn from new information by adjusting the strength of neural connections. 

Critically, the human brain does not observe a pattern and then forget it, it stores it and uses the 
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information in a feedback network; the right hand illustration, in Figure 21, describes how this 

behaviour is built up with deeply connected hidden layers.   

           

Figure 21: Feed Forward Neural Networks 

In an artificial neural network, the connections are assigned numeric values, known as weight to 

achieve a desired outcome. Each neuron is connected to every neuron in the previous layer. The 

strength of the connection between two neurons is given by the numeric weight value. 

 

 
 

The value passed to the neuron being calculated is done by taking all the value of the neurons in 

the previous layer and multiplying them by the appropriate weights and summing the results. The 

sum plus an extra offset, known as the bias is passed to the input of a function known as the 

transfer function for that layer. The output shown in the equation above is passed to the next 

neuron. This process is repeated for all the neurons in a layer and then again for the next layer. 

The weights, biases and transfer functions determine how inputs are transferred to outputs. Feed 

forward neural networks are useful for predictive supervised learning problems where the goal is 

to map a given set of inputs to a given set of outputs. 

2.4.5 LONG SHORT-TERM MEMORY NETWORKS 

As discussed previously the human brain does not discard learnt information only to relearn from 

it. It stores the information building on what was learnt and only discards useless information.  

𝑋2 = 𝑓(𝑤22𝑥2 + 𝑤12𝑥1 + 𝑏2) 
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Figure 22: Recurrent Neural Networks 

A way of replicating the brains’ ability to remember long term dependencies is to use a Long Short-

Term Memory (LSTM) network, shown in Figure 22. This is a type of Recurrent Neural Network 

(RNN). All RNN have this form. In standard RNNs a simple layer within each block, as previously 

described in Figure 21, can be a simple tanh function, pushing a value from -1 to 1 for the output. 

In LSTMs, however, this chain like structure is different. Instead of having a single neural network 

layer, there are four behaving in a distinct manner. The most important element in this structure is 

the cell state, 𝐶𝑡, the horizontal line running through the top of the figure. The cell state can be 

understood as a conveyer belt, running through the entire structure with only minor linear 

interactions. If required, the information being passed from one network to the next flows along 

unchanged. In an LSTM implementation the RNN has the ability to remove or add information to 

the cell state, carefully regulated by functions called gates. Gates can let information through and 

are made up of a sigmoid neural net layer and a pointwise multiplication operation. Simply, the 

sigmoid layer outputs numbers between zero and one: one, allows all the information to be passed 

and zero lets nothing through. An LSTM has four such gates to protect and control the cell state by 

forgetting, updating and outputting the cell (𝐶𝑡) and hidden (ℎ𝑡) states. 

 

In an LSTM network the first step is to decide what information is kept and what is discarded from 

the cell state. This is done through the first sigmoid layer, called the ‘forget gate.’ It looks at current 

hidden state ℎ𝑡−1 and the next input feature 𝑥𝑡, outputting a value between 0 and 1 for each number 

in the cell state 𝐶𝑡−1. The increments between 0 and 1 representing what is kept and what is 

discarded. The equation below describes the ‘forget gate’ layer at time step 𝑡. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

Where, 𝜎 is the sigmoid function, described in the equation: 

 

𝜎(𝑥) = (1 + 𝑒𝑥−1 )−1 
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𝑊𝑓 is the learnable weight matrices for the ‘forget’ layer, ℎ𝑡−1 is the current hidden state and 𝑥𝑡 is 

the next input feature at time 𝑡.  

 

The next gate is concerned with how the cell and hidden states are updated. This is done in two 

steps, first a sigmoid layer called the ‘input gate’ (𝑖𝑡) is used control which values are updated and 

the second part which uses a tanh function to create a vector of candidate values (𝑔𝑡). 

 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡  ] + 𝑏𝑖 ) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔. [𝑡𝑡−1, 𝑥𝑡] + 𝑏𝑔) 

 

The old cell state 𝐶𝑡−1 is updated to the new cell state 𝐶𝑡 by multiplying by the ‘forget gate’ 𝑓𝑡 to 

remove information that was discarded earlier. Then input gate and candidate values are 

concatenated and added to make the new cell state. 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡 

 

Finally, the output gate (𝑜𝑡) controls, through filtering of the cell state, what is kept in the hidden 

state (ℎ𝑡) as the final output of the LSTM network. 

 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 

 

In the following implementation the feature 𝑋𝑡 is cumulative sum of the active high duration for the 

event code generated by the on-train diagnostic system.  

 

∑ 𝑋(𝑑𝑡)

𝐸𝑓𝑡

𝑑𝑡 =1

 

 

This is calculated from the end of the first active high duration (𝑑𝑡) up to the point of known failure 

(𝐸𝑓𝑡) where the vehicle was called in for maintenance action. 

2.4.6 RESULTS AND FINDINGS 

The LSTM RNN is with the historic time series event data (leading up to the maintenance action) 

obtained from the braking system for a code with maintenance priority level one (high severity). 

The objective of the LSTM RNN model is to predict the accumulation of activations for the selected 

code (Active High), which can then be used to support maintenance decisions. A sequence-to-

sequence method recalculating the prediction at each iteration is shown in the top left hand plot of 

Figure 22. When the prediction is based on values at each time step and updated with previous 

predicted values the error can be higher as seen in the calculated Root Mean Squared Error 

(RMSE) on the bottom left hand plot, with an RMSE of 19.5. 
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Figure 23: Long Short-Term Memory Network Implementation 

 

Figure 24: Full Results of LSTM Network Performance 

 

If observed values are available to the LSTM RNN then the RMSE value can be reduced to give a 

more robust model as can be seen in the right hand plots of Figure 23. Here the forecast is tracking 

actual accumulated active high time significantly better with an RMSE value of 8.6.  

 

Figure 24 shows the full output implementation from LSTM network for the MP1 brake subsystem 

code. The graph shows the observed and forecasted values from the RNN. The y-axis shows the 

accumulated time a code was activated. It can be seen that for this example good correlation 

between the rate at which the event code is active is predicted within an acceptable error range 

Proposed maintenance 

Intervention threshold  
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compared to the method using unobserved values. With more development and through validation 

with continuous data it is anticipated the prediction of future events could give pre-warning of failure 

events some 50-75% earlier to a proposed maintenance intervention threshold as indicated by the 

blue star in the figure. The prediction threshold can be designed to be the product of accumulation 

time the code is active and its gradient. Depending on an actual time between depot visits, a 

reasonable goal for the advanced warning could be between 75 to 100 hours prior warning to 

prepare the depot to efficiently manage problematic vehicles and more importantly, the 

management of the entire fleet of vehicles. 

2.4.7 PROPOSED IMPLEMENTATION 

The implementation of the proposed techniques within a predictive maintenance strategy will 

require periodic access to data from the on-train diagnostic system. The most reliable method will 

be to have a microcontroller on-board the train that would have continuous access to the diagnostic 

data with additional access to the vehicle operational data such as speed, distance and GPS 

channels. This standalone microcontroller should be equipped with sufficient processing power to 

replicate all the individual steps to deliver the prediction. It should be capable of communicating 

advanced warning with sufficient detail about the failure symptoms to ensure an adequate amount 

of time to enable fleet maintainers to adjust maintenance plans and prepare the vehicles for arrival 

at the appropriate maintenance depot. 

 

During normal operation, the vehicle may experience a failure event. For example, as can be seen 

in Figure 25, if this failure event is detected between depot C and depot B, going in an anti-

clockwise direction, and the event happens within 24 hours of leaving depot C shown as MP1 in 

red on the illustration. Furthermore, If the assumed time between depot visits is 3 days and if the 

high severity failure warning (‘Finally Broken’ MP1 code) is reported by the vehicle, it will be 48 

hours away from depot B. With the proposed prediction methods, it is anticipated that informed 

decision could be made as to the nature of the failure and severity according to the diagnostic data 

architecture. It is anticipated that this should provide sufficient early warning to modify the current 

maintenance plan and schedule the vehicle to arrive at the appropriate maintenance depot. The 

time period before failure should also provide sufficient time to allow the depot (depot B in Figure 

25) to prepare the necessary resources, spare parts and equipment etc. to deal with the failure 

symptoms in a proactive manner to reduce the cost of maintenance, rather than the higher cost 

associated with unscheduled corrective maintenance.  
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Figure 25: Conceptual Maintenance Planning Implementation 

2.5 SUMMARY OF OBSERVATIONS AND 
RECOMMENDATIONS 

The research described in the previous sections has investigated the application of on-train 

diagnostic data for use in a CBM model for rolling stock. In principle two types of machine learning 

approaches have been applied to the on-train diagnostic data from the two case studies. The first 

uses an unsupervised method looking at historical data to extract trends and patterns from the 

failure symptoms without actual information of failures and maintenance records. The second 

method is supervised; here failure information is used to teach the neural network the patterns in 

data as recorded by the on-train diagnostic system. Each recorded failure event, if successfully 

linked to a ‘finally broken’ code and maintenance action, can be used as a resource for teaching 

the model the sequence of events or patterns leading up to a failure which can be used to provide 

an early warning of an imminent failure and support maintenance planning.  

 

In contrast, it can be seen that the unsupervised method used in case study 1 must infer the failure 

condition from the data which can be subjective and open to interpretation. Furthermore, a detailed 

analysis of the network performance using the training and validation datasets presented in the 

case study reveals that the trained neural network does not respond well in learning the patterns 

in the historic data due to incomplete data and lack of linked maintenance records. Critically in this 

type of implementation the lack of data quality, absence of failure data and the process of linking 

and correlating the dataset to known failure events by maintenance actions has resulting in a poor 

failure prediction. 
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In case study 2, using the supervised methodology, a novel data architecture derived from data 

acquired by the on-train diagnostic system was established which provides a multidimensional view 

of the operational behaviour for the systems analysed. It also allows the use of statistical methods 

to be employed to observe trends and patterns in the data more efficiently. Finally, it allows features 

from that data to be extracted looking at vehicle and fleet wide operation. These can then be used 

in the development of advanced predictive methods for intelligent scheduling of maintenance. 

 

A valuable addition to the dataset used in case study 2 is the relationship between the failure codes 

and maintenance actions obtained from the vehicle operator/maintainer, which were used to teach 

the predictive model to recognise when failure patterns in the diagnostic data were present. This 

allowed for a more accurate prediction of future failures. The approach is envisaged to yield benefits 

over an unsupervised methodology where failure information is not employed. 

 

To continue the progress and development of a system for advanced warning and scheduling of 

future maintenance using on-train diagnostic data, it is recommended that continuous data from a 

larger range of systems/components from at least one vehicle are analysed to evaluate the use of 

the prediction methods for early failure warning and maintenance scheduling. Further work should 

also include the identification of how the prediction techniques could be implemented in the 

maintenance planning of rolling stock and further validation of the method and outputs. 
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PART II DECISION SUPPORT BASED ON CONDITION DATA 

3. FERTAGUS CASE STUDY  

 

This case study explores the use of condition data to support wheelset maintenance decisions for 

a Portuguese train operating company – Fertagus. First, Section 3.1 applies Linear Mixed Models 

(LMMs) to assess the evolution of wear and compares the wear performance to a fleet operating 

on LUL, while Section 3.2 applies Survival Models (SM) to quantify the probability of damage 

occurrence. Then, section 3.3 addresses the use of a Markov Decision Process (MDP) approach 

to derive an optimal maintenance strategy for railway wheelsets. Sections 3.4 and 3.5 explore the 

application of the prototype of decision support tool for a rolling stock management system, using 

respectively: i) a tactical maintenance planning and ii) an operational maintenance scheduling. 

Finally, Section 3.6 provides a discussion on the uncertainty associated with different inspection 

devices (e.g. laser inspection device) potentially used in the CBM model. 

 

3.1 STATISTICAL MODELLING OF WHEELSET 
WEAR  

 

This section explores the use of statistical models to assess the evolution of wear trajectories of 

railway wheelsets. It provides insight into the process of wheelset degradation and their usual 

maintenance procedures. Using a quantitative basis of data from a fleet of modern EMU trains from 

a Portuguese train operating company, different model specifications for the wheelsets’ wear 

evolution are compared using Linear Mixed Models (LMMs). The wear trajectory is assessed by 

the evolution of the wheel tread diameter, the flange thickness, the flange height and the flange 

slope. The variability in the data was associated with several factors, such as the month of 

measurement, the unit vehicle or the vehicle type, and their influence on the wear trajectories was 

also analysed. From the observation of the results obtained, it was possible to conclude that the 

wheel hardness can have an influence on the wheelset degradation trajectory. Finally, the statistical 

patterns found seem to be consistent with other train fleets. 

- Brief background 

This subsection focuses on the wheel condition, particularly on the statistical modelling of the 

deterioration processes involved in the wheel wear evolution. It provides a quantitative basis, based 

on a sample collected from a Portuguese train operating company, which may provide a better 

understanding of the needs in wheelset maintenance processes (renewal, preventive and 

corrective). It also supports the identification of the main factors that explain the variability in wear 

predictions. Finally, it also corroborates the theory that the models and variables here adopted can 

be applied to any fleet of vehicles revealing similar patterns and behaviours (Andrade and Stow 

2016). 

Statistical approaches to study the wear behaviour in the degradation of railway wheelsets are 

more commonly found in the analysis of physical quantities, such as vertical wheel loads, residual 
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stresses, longitudinal or transverse contact stresses, rather than geometric parameters (Pombo et 

al. 2011a, Hossein et al. 2015). In fact, most of the studies do not cover the probabilistic issues in 

their modelling, mainly when irregularities can be considered continuously distributed along the 

track. In these cases, approaches based on stochastic process theory are more appropriate 

(Iwnicki 2006). A few studies investigated degradation data from the wheel profile to estimate failure 

distributions and associated reliability (Freitas et al. 2009, Asplund et al. 2016). Moreover, Lin and 

Asplund (2014) used Weibull models to estimate lifetime data for a sample of locomotive wheels. 

Wang et al. (2015) used a data-driven model to optimize the wheel reprofiling strategy, aiming to 

extend the life cycle of metro wheels. Recently, from the perspective of reducing life cycle cost and 

managing wheelset maintenance activities, different Markovian approaches were conducted to 

optimize the reprofiling policy for train wheels, by modelling distinct variables to identify degradation 

states (Jiang et al. 2017, Braga and Andrade 2018, Mingcheng et al. 2018). 

 

Notwithstanding, none of the above presented statistical studies used Linear Mixed Models (LMMs) 

in literature. The one relevant was a previous research work of Andrade and Stow (2016), whose 

analysis was further used as a basis for a new wheelset maintenance strategy, called ‘economic 

tyre turning’ in Andrade and Stow (2017a). This present paper follows the study and methods used 

in Andrade and Stow (2016) and tries to give a clear answer to a few main topics left open for 

further research, as to whether or not the statistical patterns found are consistent in other train 

fleets. Therefore, it tries to validate the statement that these LMMs can be applied to any fleet of 

vehicles with consistent results. Secondly, the present research work also introduces a new 

important variable - the flange slope (qR) - which is in line with what is proposed in Asplund et al. 

(2016), due to its importance on the control of the degradation and damage of the wheel profile. 

Finally, this section also assesses the influence of the wheel hardness in the wheelsets degradation 

trajectories. The sample analysed – from a case study on the fleet of a Portuguese train operating 

company – went through a big renewal program in its train fleet. Every wheelset was renewed by 

a new one, with wheels with different hardness. Therefore, this statistical analysis also makes the 

distinction between this two operating cycles, considering its influence in the wheelset wear 

trajectory. 

 

A railway wheelset is a component that consists of two wheels linked by a rigid axle, allowing the 

motion to the vehicle when rolling over surfaces (rails), as depicted in Figure 26. 

 

Figure 26: Railway wheelset and rails. 
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For safe operation of the wheelsets, it is essential to guarantee that both the axle and the wheels 

are not damaged and are within the dimensional safety specifications. Otherwise, both the axle or 

the wheels have to be reprofiled or replaced by new ones if necessary, which will be a request of 

maintenance. 

 

To control the level of degradation of the wheels it is necessary to periodically assess some 

geometric variables from the wheel tread profile (Figure 27) which are measured relatively to three 

fixed measurements (a, b, c) and from a tread datum position point (T). If these variables are 

beyond the safety limits, the wheelset has to be reprofiled or replaced. 

 

 

Figure 27: Wheel diameter (D), flange height (Fh), flange thickness (Ft) and flange slope (qR). 

 

To illustrate schematically typical wear trajectories of railway wheels and their maintenance,  

Figure 28 is provided, using the wheel diameter (D) as the main indicator. Continuous blue lines 

represent the actual deterioration process of the wheels on the wear trajectory. Note that, for 

simpler understanding, it is considered that wheels wear at a constant rate, i.e. the continuous blue 

lines have the same slope in the graph. The blue dotted lines represent the impact in D due to the 

maintenance actions performed. 

 

Railway wheels are in service starting from an initial diameter (Di), when they are new (green 

squares in Figure 28), until the diameter reaches the scrap diameter (Ds), beyond which it is not 

safe to continue operating, the vehicle must be removed from service and the wheelset replaced 

(renewal). Moreover, there are running profile limits for the flange height (Fh_lim), flange thickness 

(Ft_lim) and flange slope (qR_lim). To avoid the wheelsets reaching these case limits and to 

prevent them from other non-detected problems, preventive maintenance (turning) is carried out 

with a certain kilometre interval (or mileage interval). 
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Typically, train operating companies do this type of maintenance after an established number of 

unit kilometres, since the last maintenance operation (turning or renewal). This is the reason why, 

in Figure 28, preceding each preventive maintenance (yellow squares), there is the same wear 

trajectory, i.e. the same line slope a line with a same length and unit kilometres between 

maintenance operations. In different circumstances, if the wheels are found beyond the limits 

before the next preventive maintenance and if the wheels have not reached yet their scrap 

diameter, the wheels must be reprofiled (turning) to restore the geometric parameters (Fh, Ft, qR) 

to safer values, this is what is called a corrective maintenance action represented in Figure 28 with 

the orange square. Moreover, if the wheelset is found at any time with damage, it must also go to 

the wheel turning lathe for corrective maintenance (red square in Figure 28). It is assumed that 

each kilometre interval between maintenance operations (turning or renewal) is a variable called 

kilometres since last turning or renewal operation (K). 

 

Each time a wheel goes to a wheel lathe, it undergoes a diameter loss due to turning (DT) which 

can be higher or lower, depending on the maintenance type action being taken and the specific 

situation (e.g. presence of damage, as wheels flats, cavities or Rolling Contact Fatigue). In a 

situation of preventive maintenance, it is expected that the wheel goes through the smallest loss of 

diameter. On the other hand, to correct damaged wheels, it takes a big diameter loss, shortening 

significantly the wheel life cycle (Pombo et al. 2011b). In fact, this last situation can be seen in 

Figure 28. It is possible to distinguish two distinct wheel life cycles: the first one that includes K1, 

K2, K3, K4 and a second one that includes K5, K6, K7, K8. The first wheel cycle had an extended 

life because it went only through regular preventive maintenances. By comparing the cumulative 

kilometres since turning of the first cycle (K1 + K2 + K3 + K4) with the second one (K5 + K6 + K7 

+ K8), it is clear that the latter had a much lower span life. This is not only because of the corrective 

maintenances that this wheel went through, but even more due to the damage correction (red 

square) that, in Figure 28, occurred at a time of a lower diameter. In fact, Figure 28 goes in line 

with practical observations reported in the past, in which there is a greater probability of damage 

occurrence in smaller diameters (Molyneux-Berry and Bevan 2012). 

 

Figure 28: Schematic wheel maintenance trajectories with wheel diameters and the unit kilometres. 
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The use of LMMs in statistical modelling of wheel degradation can be advantageous to infer about 

the dependence between different variables in the wheel wear evolution, to provide straightforward 

mechanisms to control for the variability within and between different groups of the wheelset 

position and technical specifications (Molyneux-Berry and Bevan 2012, Ferreira et al. 2012). LMMs 

are linear models that both monitor the fixed effects of different controlling variables (Xiβ) in the 

expected mean of the dependent variable and the random effects associated with some factor or 

group (Zibi). According to Galecki and Burzykowski (2013), and for a single grouping level, LLMs 

can be formulated as 

 

𝒚𝑖 = 𝑿𝑖𝛽 + 𝒁𝑖𝒃𝑖 + 𝜀𝑖 

 

Where 𝑦𝑖 is the dependent variable for the group i, 𝑋𝑖 is the designed matrix for that group i, β is 

the slope parameter, 𝜀𝑖 is the residual error for group i, 𝑍𝑖 is the matrix of covariates for group i and 

𝒃𝑖 is its corresponding random effect. It is assumed that the random effects (bi) and the residual 

errors (εi) follow normal distributions with zero mean and covariance matrices of D and ℛi, with bi 

⊥ εi 

 

𝒃𝑖 ∼ 𝑁(𝟎,  ) 

 

𝜺𝑖 ∼ 𝑁(𝟎,ℜ𝑖) 

 

Both terms bi and εi are considered independent for the same group i and between different groups. 

The covariance matrices are specified with an unknown scale parameter 𝜎2 as follows: 

 

 = 𝜎2𝑫 

 

ℜ𝑖 = 𝜎2𝑹𝑖 

 

Note that there are a few additional constraints that have to be made on the matrices D and Ri - 

multiples of the identity matrix - to guarantee identifiability (Galecki and Burzykowski 2013). All 

these statistical models were estimated using the ‘lme4’ package for the R software (Bates 2010, 

2018). 

- Application to Fertagus case study: 

Fertagus is a Portuguese train operating company, which is part of Grupo Barraqueiro, and became 

the first private train operator to guarantee the commercial concession of a railway line in Portugal. 

This company is responsible for ensuring the suburban passenger transportation between 14 

railway stations from Roma-Areeiro (Lisbon) to Setúbal. 

 

The data analysed comes from wheelset turning maintenance operations, of a fleet of 18 EMU 

trains of a single type or class, between October 2000 up to June 2015 (i.e. a 16-year interval). 

Each unit has four vehicles and each vehicle has eight wheels (i.e. four wheelsets). Figure 29 

provides a schematic representation of a four-car unit. 
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The process of data extraction took several visits to the maintenance yards (situated in Coina) and 

the access to their maintenance actions archive. The information on the geometric parameters that 

control the wear evolution of the wheelsets was saved in paper format, since it comes directly 

printed from the CNC (Computer Numerical Control) machine of the under-floor wheel lathe used 

each time a reprofiling maintenance action occurs. Because of that, before the data was able to be 

treated, it was necessary to use Computer Vision procedures, to convert the numerical information 

in the turning sheets into digital format. The turning sheets have information of the wheel profile 

degradation measurements - i.e. wheel diameter (D), flange height (Fh), flange thickness (Ft) and 

flange slope (qR) - pre and post-turning, in preventive and corrective maintenance actions. 

 

The process of wheelset turning can be described as follows: the vehicle arrives at the under-floor 

wheel lathe (which is from the Spanish train manufacturer Talgo) and the technician starts by fixing 

the wheelset to the turning machine, then, the CNC machine is calibrated relatively to the wheelset 

position and, finally, the turning starts. By the time of the turning, the technician has also to 

guarantee that there is no significant difference in diameters between wheels of the same wheelset, 

wheels of the same bogie and wheels of different bogies. The process of corrective maintenance 

actions takes more time than preventive maintenance actions, and the influence of the technician 

experience and sensitivity is more predominant. Regarding the technician influence in wheel wear 

maintenance operations, Société Nationale des Chemins de fer Français (SNCF) attempts to 

combine quantitative data with perceptions and experience of the wheel maintainers (thus, adding 

a subjective dimension to risk assessment) in order to tackle organizational issues with multiple 

decision makers and multiple criteria (Tea 2012). Another contribution towards the incorporation of 

the technician experience focused on the variability between the different wheel lathe operators 

(Andrade and Stow 2017b). 

 

Regarding other case studies involving Talgo turning lathe machines, Talgo developed a 

maintenance program called Total Logistic Care that keeps the flange thickness within an ‘optimal’ 

range of operation, instead of waiting until the wheel is out of the specifications (Pascual and 

Marcos 2004). 

 

Figure 29: Schematic representation of a four-car unit with four axle positions (AP1 - AP4). 

 

Fertagus went through a big revision in their train fleet. Every wheelset was renewed by a new one, 

with wheels made of different materials with different hardness. Each train unit changed every 
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wheel at once at a certain time between 2011 and 2013. Assuming that wheels with different 

hardness will have different wear trajectories, the following analysis using LMMs splits the two 

operating wheel cycles: 

- Cycle 1 (C1): wheels with the material of type 1; 

- Cycle 2 (C2): wheels with the material of type 2. 

The wheel database used in this research contained the following information: unit number (18 

units), unit running kilometres (cumulative kilometres), vehicle type (motor or trailer), date 

(cumulative months), wheelset position (16 positions), tread diameter (pre and post-turning), flange 

height (pre and post-turning), flange thickness (pre and post-turning) and flange slope (pre and 

post-turning). The CNC machine, from where the measurements of the wheel profiles were 

withdrawn, has the precision of ±0.05 mm for the wheel diameter and ±0.1 mm for the remaining 

geometric indicators (the flange height, flange thickness and flange slope). Table 1 provides an 

overview of the variables used in the analysis, their description, type, some statistics (mean, 

minimum and maximum), as well as the values precisions. 

Table 1: Variables, their description, type, some statistics and precision. 

Variables Description Type Mean Min Max Precision 

|D| Diameter loss due to wear [mm] Continuous 5.90 0.05 18.50 ±0.05 

Fh Change in the flange height due to wear [mm] Continuous 2.6 -0.4 8.0 ±0.1 

Ft The change in the flange thickness due to 

wear [mm] 

Continuous 0.6 -8.2 6.6 ±0.1 

qR Change in the flange slope due to wear [mm] Continuous 0.7 -5.5 4.2 ±0.1 

K Kilometers since last turning/renewal [km] Continuous 161982 5000 343662 ±1 

D Tread diameter pre-turning [mm] Continuous 866.10 797.55 924.70 ±0.05 

Fh Flange height pre-turning [mm] Continuous 30.8 27.8 38.0 ±0.1 

Ft Flange thickness pre-turning [mm] Continuous 31.6 16.1 36.4 ±0.1 

qR Flange slope pre-turning [mm] Continuous 11.2 4.6 15.7 ±0.1 

W Wheelset type (3 types: motor, trailer, motor 

leader) 

Nominal     

H Hardness (2 types: C1, C2) Nominal     

U Unit number (18 units) Nominal     

V Vehicle type (2 types: motor vehicle, trailer 

vehicle) 

Nominal     

M Month of measurement (cumulative) Nominal     

 

On the wear trajectory, it is necessary to study the variables that assess the evolution of the 

geometrical measures of the wheel profile, which are the change in the tread diameter due to wear 

(ΔD), the change in the flange height due to wear (ΔFh), the change in the flange thickness due to 

wear (ΔFt) and the change in the flange slope due to wear (ΔqR). Going back to Figure 28, to the 

case of the wheel tread diameter (D), the change in diameter due to wear (ΔD) is the difference 

between the final and the initial wheel diameter for each graph segment in continuous blue lines 

(i.e. each wear period). Similarly, it is possible to extend this difference to the remaining wheel 

profile measurements and define the quantities ΔFh, ΔFt and ΔqR. Note that, in this paper, the 
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change in the tread diameter due to wear (ΔD) is represented in its absolute value, in a variable 

called diameter loss due to wear (|ΔD|). 

 

If plotted several observations in the diameter loss due to turning (|ΔD|), the change in the flange 

height due to wear (ΔFh), the change in the flange thickness due to wear (ΔFt) and the change in 

the flange slope due to wear (ΔqR), respectively Figures 30 – 33, associated with the kilometres 

since last turning/renewal (K). It is possible to see significant level of unexplained variability (Table 

2), i.e. variability that is not explained by the variation in the kilometres since last turning/renewal. 

 

 

Figure 30: Diameter loss due to wear with the kilometres since turning/renewal. 

  

Figure 31: Change in the flange height due to wear with the kilometres since turning/renewal. 
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Figure 32: Change in the flange thickness due to wear with the kilometres since turning/renewal. 

 

Figure 33: Change in the flange slope due to wear with the kilometres since turning/renewal. 
 

Table 2. Coefficient of determination (𝑅2) in the wheel profile measurements. 
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However, this variability may be explained by several factors, such as the unit number, the vehicle 

type and the month of measurement from Table 1. In fact, an LMM concept can handle these 

factors treating them as random effects in its modelling. There are two ways of modelling random 

effects with multiple groups: considering them as crossed random effects or nested random effects. 

For example, modelling the wheelset degradation from a wheelset in a given vehicle, it is possible 

to consider random effects in wheelset position ‘nested’ within each vehicle type, or not consider 

the random effect of wheelset position within each vehicle type and instead model these random 

effects in a crossed manner. In line with Andrade and Stow (2016), only crossed random effects 

were used because no statistically significant increase in information is found when nested random 

effects are considered. 

 

From the 6556 wheel profiles measured, different LMMs were specified for the dependent variables 

that assess the wheelset’s degradation trajectory: 

 

i.   The diameter loss due to wear – |ΔD|; 

ii.  The change in the flange height due to wear – ΔFh; 

iii. The change in the flange thickness due to wear – ΔFt; 

iv. The change in the flange slope due to wear – ΔqR. 

 

Table 3 compiles and identifies all the fixed effects, random effects and variance structure for each 

dependent variable in the models here specified (M0 – M4b). The models are associated with the 

fixed effects of the kilometres since turning/renewal (K), the wheelset type (W) and the wheel 

hardness (H) - parameters that are known to be strongly related with the wheel degradation 

trajectory and that are ‘fixed’ factors inherent to a wheelset, at any time. Then, random effects are 

added: the month of measurement (M), the unit number (U) and then vehicle type (V). 

 

Models M0 are the simplest ones only with an intercept and a slope parameter, considering only 

the kilometres since last turning/renewal (K) as the explaining fixed effect variable, since it is the 

most important fixed effect here analysed. Models M1 are the reference models which consider all 

the fixed effects here analysed for the dependent variables, but do not take into account random 

effects. 

 

Note that, some of the models explored were specified in the same way as in Andrade and Stow 

(2016), i.e. using kilometres since turning/renewal (K) as an explaining variable with two terms: a 

linear and a quadratic term (M1a – M4a), and others with three terms: a linear, a quadratic and a 

cubic term (M1b – M4b). 

 

For the models with random effects (M2 – M4), the number of random factors increase, i.e. to the 

month of measurement (M) in the M2, the unit number (U) was added in the M3, followed by the 

addition of the vehicle type (V) in M4. This specific adding order was followed by Andrade and Stow 

(2016), since in their case study this would better identify which random factors added more 

variability around the expected mean (i.e. controlling for different values for the fixed effects). In 
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terms of variance structure, the variances for the different groups within each different random 

effect factor are all considered the same – VC. 

            Table 3: Linear Mixed Models explored for each dependent variable with fixed effects, random effects and 
variance structure. 

Dependent 
variable 

Models Fixed effects Random effects Variance 

structure 

|D| M0 1, K   

 M1a 1, K, K2, W, H   

 M2a 1, K, K2, W, H M VC 

 M3a 1, K, K2, W, H M, U VC, VC 

 M4a 1, K, K2, W, H M, U, V VC, VC, VC 

Fh M0 1, K   

 M1b 1, K, K2, K3, W, H   

 M2b 1, K, K2, K3, W, H M VC 

 M3b 1, K, K2, K3, W, H M, U VC, VC 

 M4b 1, K, K2, K3, W, H M, U, V VC, VC, VC 

Ft M0 1, K   

 M1b 1, K, K2, K3, W, H   

 M2b 1, K, K2, K3, W, H M VC 

 M3b 1, K, K2, K3, W, H M, U VC, VC 

 M4b 1, K, K2, K3, W, H M, U, V VC, VC, VC 

qR M0 1, K   

 M1b 1, K, K2, K3, W, H   

 M2b 1, K, K2, K3, W, H M VC 

 M3b 1, K, K2, K3, W, H M, U VC, VC 

 M4b 1, K, K2, K3, W, H M, U, V VC, VC, VC 

 

For instance, a specific second-degree polynomial, that could model any dependent variable as 

|ΔD|, ΔFh, ΔFt or ΔqR, would result in the following expression 

 

𝒚𝑚𝑢𝑖 = 𝜷𝟎 + 𝜷𝑲𝑲𝑚𝑢𝑖 + 𝜷𝑲2𝑲𝑚𝑢𝑖
2 + 𝜷𝑾𝑾 + 𝜷𝑯𝑯 + 𝒃0𝑚 + 𝒃0𝑢 + 𝜺𝑚𝑢𝑖 

 

Considered for the fixed effects on the kilometres since turning/renewal (K), the wheelset type (W) 

and the wheelset hardness (H), where m indexes the month of measurement, u indexes the train 

unit, i indexes the individual measurement of the wheel, 𝒃0𝑚 and 𝒃0𝑢 are crossed random effects 

and 𝜺𝑚𝑢𝑖 is the traditional normally distributed random error. 

 

In the analysis followed hereinafter, the Akaike information criterion (AIC) is used solely to compare 

models with different fixed effects and without random effects. On the other hand, the restricted 

maximum likelihood (REML) criterion, namely a ’goodness of feet’ measure: the 2 restricted log 

likelihood, is used to compare models with the same fixed effects but different random effects. The 

reason why the model comparison is conducted using the restricted maximum likelihood (REML) 

criterion is due to the ‘lme4’ package fits the model using that same criterion (Bates et al. 2014). 
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For a deeper discussion on the use of different criteria in model comparison in LMM, see Müller et 

al. (2013), namely on the lack of consensus on how to approach model selection in LMM.  

 

i. The diameter loss due to wear – |ΔD| 

The first dependent variable that needs to be modelled is the diameter loss due to wear (|ΔD|). As 

explained before in Figure 30, there is a lot of unexplained variability around the second-order 

polynomial describing the evolution of the diameter loss due to wear with the kilometres since last 

turning/renewal. This variability is then explored again through LLMs, comparing the different 

specifications in Table 3 for the models M0–M4a. Table 4 provides the REML estimates for the 

parameters of the models explored. Note that, all the coefficients are statistically significant at the 

5% significance level for all fixed effects. Comparing the variances with the total variance (σ2 + dM 

+ dU + dV = 3.804), it is possible to find out that the measurement noise still captures 85.4%, the 

factor month of measurement (M) captures 12.3%, the factor unit (U) captures 2.2% and finally the 

factor vehicle (V) captures 0.1% of the total variance. 

 

 

 

 

 

ii. The change in the flange height – ΔFh 

 

The second dependent variable being modelled is the change in the flange height due to wear 

(ΔFh). As explained before in Figure 31, there is a lot of unexplained variability around the third-

order polynomial describing the evolution of the flange height due to wear with the kilometres since 

last turning/renewal. This variability is then explored again through LLMs, comparing the different 

specifications in Table 3 for the models M0–M4b. Table 5 provides the REML estimates for the 

parameters of the models explored. Note that, all the coefficients are statistically significant at the 

5% significance level for all fixed effects. Comparing the variances with the total variance (σ2 + dM 

+ dU + dV = 0.8054), it is possible to find out that the measurement noise still captures 52.4%, the 

factor month of measurement (M) captures 17.9%, the factor unit (U) captures 1.3% and finally the 

factor vehicle (V) captures 28.4% of the total variance. 
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Table 4: Restricted maximum likelihood estimates for the parameters of models M0 – M4a for the dependent variable 
change in the tread diameter (D). 

D 

Param. M0 M1a M2a M3a M4a 

Fixed effects 

1 β0 

(a) 

0.1714 

(0.1130) 

2.795 

(0.2454) 

1.667 

(0.2935) 

1.509 

(0.3165) 

1.509 

(0.3191) 

K βK 

(a) 

3.541 x 10-5 

(6.605 x 10-7) 

1.562 x 10-5 

(2.435 x 10-6) 

2.572 x 10-5 

(2.785 x 10-6) 

2.796 x 10-5 

(3.010 -6) 

2.796 x 10-5 

(3.010 x 10-6) 

 βK² 

(a) 

 5.151 x 10-11 

(5.997 x 10-12) 

2.906 x 10-11 

(6.941 x 10-12) 

2.242 x 10-11 

(7.629 x 10-12) 

2.242 x 10-11 

(7.629 x 10-12) 

W βmotor 

(a) 

 -0.1214 

(0.1076) 

-0.1219 

(0.1031) 

-0.1264 

(0.1025) 

-0.1264 

(0.1025) 

 βtrailer 

(a) 

 -1.710 

(0.1046) 

-1.692 

(0.1005) 

-0.1697 

(0.09997) 

-0.1697 

(0.1152) 

 βleader  0 (b) 0 (b) 0 (b) 0 (b) 

H βC2 

(a) 

̶ -0.6792 

(0.1473) 

-0.2443 

(0.3251) 

-0.4862 

(0.3288) 

-0.4862 

(0.3288) 

 βC1 ̶ 0 (b) 0 (b) 0 (b) 0 (b) 

Random effects 

M dM   0.6859 0.6838 0.6838 

U dU    0.2903 0.2903 

V dV     0.04042 

Scale 

 σ 2.086 1.896 1.815 1.803 1.803 

2 restricted log likelihood 

    13414.6 13394.3 13394.3 

Akaike information criterium 

  14126.9 13503.6    

Number of parameters 

  3 7 8 9 10 

(a) Approximate standard errors for fixed effects. 

(b) This parameter is redundant. 
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Table 5: Restricted maximum likelihood estimates for the parameters of models M0 – M4b for the dependent variable 
change in the flange height (Fh). 

Fh 

Param. M0 M1b M2b M3b M4b 

Fixed effects 

1 β0 

(a) 

1.597 

(0.04645) 

0.2386 

(0.1278) 

0.004362 

(0.1436) 

-0.01876 

(0.1617) 

-0.01876 

(0.5048) 

K βK 

(a) 

6.342 x 10-6 

(2.715 x 10-7) 

1.881 x 10-5 

(2.348 x 10-6) 

2.534 x 10-5 

(2.666 x 10-6) 

2.608 x 10-5 

(3.122 x 10-6) 

2.608 x 10-5 

(3.122 x 10-6) 

 βK² 

(a) 

 2.680 x 10-11 

(1.440 x 10-11) 

-2.250 x 10-11 

(1.731 x 10-11) 

-2.664 x 10-11 

(2.043 x 10-11) 

-2.664 x 10-11 

(2.043 x 10-11) 

 βK³ 

(a) 

 -1.748 x 10-16 

(2.628 x 10-17) 

-7.748 x 10-17 

(3.234 x 10-17) 

-7.269 x 10-17 

(3.813 x 10-17) 

-7.269 x 10-17 

(3.813 x 10-17) 

W βmotor 

(a) 

 -0.09266 

(0.03929) 

-0.09339 

(0.03713) 

-0.09374 

(0.03692) 

-0.09374 

(0.03692) 

 βtrailer 

(a) 

 -0.7379 

(0.03818) 

-0.7545 

(0.03621) 

-0.7521 

(0.03604) 

-0.7521 

(0.6772) 

 βleader  0 (b) 0 (b) 0 (b) 0 (b) 

H βC2 

(a) 

̶ -0.1409 

0.05379 

-0.3868 

0.1615 

-0.3764 

0.1675 

-0.3764 

0.1675 

 βC1 ̶ 0 (b) 0 (b) 0 (b) 0 (b) 

Random effects 

M dM   0.3681 0.3804 0.3804 

U dU    0.1008 0.1008 

V dV     0.4782 

Scale 

 σ 0.8573 0.6920 0.6532 0.6495 0.6495 

2 restricted log likelihood 

    6844.14 6830.07 6830.07 

Akaike information criterium 

  8297.42 6897.38    

Number of parameters 

  3 8 9 10 11 

(a) Approximate standard errors for fixed effects. 

(b) This parameter is redundant. 
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iii. The change in the flange thickness – ΔFt 

The third dependent variable being modelled is the change in the flange thickness due to wear 

(ΔFt). As explained before in Figure 32, there is a lot of unexplained variability around the  

third-order polynomial describing the evolution of the diameter thickness due to wear with the 

kilometres since last turning/renewal. This variability is then explored again through LLMs, 

comparing the different specifications in Table 3 for the models M0–M4b. Table 6 provides the 

REML estimates for the parameters of the models explored. Note that, all the coefficients are 

statistically significant at the 5% significance level for all fixed effects. Comparing the variances 

with the total variance (σ2 + dM + dU + dV = 3.493), it is possible to find out that the measurement 

noise still captures 39.0%, the factor month of measurement (M) captures 55.4%, the factor unit 

(U) captures 1.4% and finally the factor vehicle (V) captures 4.2% of the total variance.  

 

iv. The change in the flange slope – ΔqR 

 

Finally, the fourth dependent variable being modelled is the change in the flange slope due to wear 

(ΔqR). As explained before in Figure 33, there is a lot of unexplained variability around the  

third-order polynomial describing the evolution of the diameter thickness due to wear with the 

kilometres since last turning/renewal. This variability is then explored again through LLMs, 

comparing the different specifications in Table 3 for the models M0–M4b. Table 7 provides the 

REML estimates for the parameters of the models explored. Note that, all the coefficients are 

statistically significant at the 5% significance level for all fixed effects. Comparing the variances 

with the total variance (σ2 + dM + dU + dV = 3.278), it is possible to find out that the measurement 

noise still captures 28.4%, the factor month of measurement (M) captures 50.0%, the factor unit 

(U) captures 0.1% and finally the factor vehicle (V) captures 21.5% of the total variance. 
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Table 6: Restricted maximum likelihood estimates for the parameters of models M0 – M4b for the dependent variable 
change in the flange thickness (Ft). 

Ft 

Param. M0 M1b M2b M3b M4b 

Fixed effects 

1 β0 

(a) 

-0.08539 

(0.1049) 

-3.805 

(0.3208) 

-1.269 

(0.3071) 

-1.670 

(0.3461) 

-1.670 

(0.5168) 

K βK 

(a) 

4.182 x 10-6 

(6.131 x 10-7) 

4.803 x 10-5 

(5.894 x 10-6) 

2.441 x 10-5 

(4.955 x 10-6) 

3.096 x 10-5 

(6.114 x 10-6) 

3.096 x 10-5 

(6.114 x 10-6) 

 βK² 

(a) 

 -1.233 x 10-10 

(3.614 x 10-11) 

-8.984 x 10-11 

(3.226 x 10-11) 

-1.232 x 10-10 

(4.016 x 10-11) 

-1.232 x 10-10 

(4.016 x 10-11) 

 βK³ 

(a) 

 2.889 x 10-17 

(6.596 x 10-17) 

9.630 x 10-17 

(6.023 x 10-17) 

1.506 x 10-16 

(7.482 x 10-17) 

1.506 x 10-16 

(7.482 x 10-17) 

W βmotor 

(a) 

 0.1658 

(0.09863) 

0.2093 

(0.06685) 

0.2045 

(0.06642) 

0.2045 

(0.06642) 

 βtrailer 

(a) 

 0.2797 

(0.09586) 

0.3028 

(0.06521) 

0.2894 

(0.06487) 

0.2894 

(0.5465) 

 βleader  0 (b) 0 (b) 0 (b) 0 (b) 

H βC2 

(a) 

̶ -2.685 

0.1350 

-3.342 

0.5675 

-3.441 

0.5722 

-3.441 

0.5722 

 βC1 ̶ 0 (b) 0 (b) 0 (b) 0 (b) 

Random effects 

M dM   1.383 1.391 1.391 

U dU    0.218 0.218 

V dV     0.383 

Scale 

 σ 1.936 1.737 1.176 1.168 1.168 

2 restricted log likelihood 

    10775.9 10776.4 10756.4 

Akaike information criterium 

  13638.6 12931.7    

Number of parameters 

  3 8 9 10 11 

(a) Approximate standard errors for fixed effects. 

(b) This parameter is redundant. 
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Table 7: Restricted maximum likelihood estimates for the parameters of models M0 – M4b for the dependent variable 
change in the flange slope (qR). 

qR 

Param. M0 M1b M2b M3b M4b 

Fixed effects 

1 β0 

(a) 

-0.2254 

(0.09199) 

-3.583 

(0.2893) 

-0.5998 

(0.2647) 

-0.6364 

(0.2707) 

-0.6364 

(0.8819) 

K βK 

(a) 

5.627 x 10-6 

(5.376e x 10-7) 

3.729 x 10-5 

(5.315 x 10-6) 

5.419 x 10-6 

(4.085 x 10-6) 

5.836 x 10-6 

(4.286 x 10-6) 

5.836 x 10-6 

(4.286 x 10-6) 

 βK² 

(a) 

 -3.994 x 10-11 

(3.259 x 10-11) 

4.218 x 10-11 

(2.659 x 10-11) 

4.084 x 10-11 

(2.800 x 10-11) 

4.084 x 10-11 

(2.800 x 10-11) 

 βK³ 

(a) 

 -1.257 x 10-16 

(5.949 x 10-17) 

-1.503 x 10-16 

(4.964 x 10-17) 

-1.490 x 10-16 

(5.227 x 10-17) 

-1.490 x 10-16 

(5.227 x 10-17) 

W βmotor 

(a) 

 0.08834 

(0.08894) 

0.1316 

(0.05494) 

0.1312 

(0.05490) 

0.1312 

(0.05490) 

 βtrailer 

(a) 

 0.3335 

(0.08645) 

0.3558 

(0.05360) 

0.3544 

(0.05358) 

0.3544 

(0.05358) 

 βleader  0 (b) 0 (b) 0 (b) 0 (b) 

H βC2 

(a) 

̶ -0.09933 

(0.1218) 

-1.632 

(0.5253) 

-1.634 

(0.5265) 

-1.634 

(0.5265) 

 βC1 ̶ 0 (b) 0 (b) 0 (b) 0 (b) 

Random effects 

M dM   1.288 1.280 1.280 

U dU    0.05599 0.05599 

V dV     0.8393 

Scale 

 σ 1.698 1.567 0.9661 0.9654 0.9654 

2 restricted log likelihood 

    9508.04 9507.55 9507.55 

Akaike information criterium 

  12776.9 12254.3    

Number of parameters 

  3 8 9 10 11 

(a) Approximate standard errors for fixed effects. 

(b) This parameter is redundant. 
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This section provided a more comprehensive understanding on the topic of exploring wear 

trajectories of railway wheelsets. It introduced a new important variable - the flange slope (qR) - on 

the analysis of the wheelset degradation process which has a significant influence on the level of 

material removal during re-profiling. It also introduced the wheel hardness (H) as an explaining 

variable for the wheelset wear trajectories.  

 

From the data analysis, the statistical patterns found were consistent with other train fleets and, 

therefore, it validated the statement that these “models can be applied to any fleet of vehicles”. 

The kilometres since last turning/renewal (K) is the variable with more influence in the wheelset 

wear trajectories among the variables analysed, but also the variable wheelset type (W) and 

wheelset hardness (H) are statistically significant. The factor month of measurement (M) exhibit a 

high variance in every model, which is likely to be due to adhesion variations (i.e. lower in Autumn), 

and it is something that goes in line with a previous study of Andrade and Stow (2016). Comparing 

to this previous research study for a different train fleet - where random effects associated with the 

factor month of measurement (M) exhibit a higher variance, followed by the factors unit (U) and 

vehicle (V) – the influence order of these same random effects was not the same in this case study, 

existing some variations in this order for each dependent variable here analysed. This could say 

that the factors that exhibit more variance to the wheelsets degradation trajectories depend on the 

fleets analysed, their technical specifications, as well as the climate conditions of each country. 

 

As further steps for this specific case study analysis, two additional factors of the technician’s 

influence and the wheelset damaged trajectories could be included. The assessment of data on 

the wear and damage trajectories can also be monitored by more sophisticated methods, such as 

doing some survival analysis for the data analysed. Moreover, the assessment of the wheel 

deterioration trajectories should consider the influence of the rail contact points and its deterioration 

processes as well (Lewis and Olofsson 2004). The inclusion in the models of the rail line data where 

this railway company operates would definitively improve this research study. 

 

- Statistical analysis of wheel wear of TfL London Underground dataset  

This final subsection provides a statistical analysis of wheelset condition data for the Jubilee Line 

1996 Tube Stock (96TS) fleet from TfL London Underground (LUL), namely on the evolution of 

wear through: i) the diameter loss due to wear since last turning/renewal (Figure 34), ii) change in 

flange height due to wear (Figure 35), iii) change in flange thickness due to wear (Figure 36) and 

iv) change in flange slope due to wear (Figure 37).   

 

LUL consists of a number of different lines, each with their own dedicated fleet of rolling stock, 

which have historically managed their wheelsets in different ways. The majority of fleets operated 

a ‘run to fail’ policy through the use of maintenance and inspection gauges. These gauges are used 

to identify when wheels are approaching flange height, thickness and hollowing limits, but if they 

still pass the inspection gauge, then they could be returned to service with wheel turning planned 

in before the next inspection. Even though the ‘run to fail’ policy was suitable when operating a 

limited service with spare train capacity, increases in timetables means that more trains are 
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required to operate the enhanced service, and hence, unscheduled maintenance must be avoided. 

A planned preventative wheel re-profiling regime 

was required to ensure that a sufficient number of trains are available for service, which complies 

with the relevant standards. This also allows for wheel lathe demand to be accurately managed to 

ensure that demand does not exceed capacity.  

 

In order to achieve this, a wheel profile monitoring programme was introduced to establish the 

principal mode of failure and the rate of degradation across each individual fleet so that a 

preventative wheel turning interval could be implemented within each train maintenance regime. 

The data presented in Figures 34 to 37 illustrates the outputs from this monitoring programme for 

the 96TS fleet. 

 

 

Figure 34: Diameter loss due to wear with the kilometres since turning/renewal [London Underground]. 
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Figure 35: Change in the flange height due to wear with the kilometres since turning/renewal [London Underground]. 

 

 

Figure 36: Change in the flange thickness due to wear with the kilometres since turning/renewal [London 
Underground]. 
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Figure 37: Change in the flange slope due to wear with the kilometres since turning/renewal [London Underground]. 

 

A comparison of wear data between the Fertagus case study (Figures 30-33) and LUL data 

(Figures 34-37) reveals that the LUL data has less variability around the trend lines and similar 

wear rates across all axles. It can be seen from the LUL data that the 96TS have higher rates of 

tread than flange wear (where the change in flange thickness (Figure 36) can actually be seen to 

grow since flange thickness is measured relative to a tread datum which moves down the angle 

face of the flange with tread wear which can appear as a growth in flange thickness), resulting in 

wheels primarily failing through a combination of wheel hollowing and zero (or negative) conicity 

(e.g. wheelset is no longer capable of generating any steering force). 

 

Previously the fleet was re-profiled after every 570 days (≈ 256k km) which resulted in a number of 

wheels with levels of hollow tread wear and conicity which breached the criteria defined in the 

wheel standard. This increased the demand at the wheel lathe and resulted in large cut depths. 

Following a detailed review of wheel wear data and re-profiling strategy, it was recommended that 

the re-profiling interval was reduced to a frequency of 400 - 450 service days (≈ 180k – 200k km) 

to maximise the interval between turns and utilise the greatest amount of the wheel diameter 

possible.  

 

It can be seen, based on the comparison of the Fertagus and LUL data, that although the LUL data 

provides less variation in the measured condition data significant work has already been 

undertaken to define an optimal planned preventative wheel re-profiling regime. The Fertagus case 

study was therefore selected for further assessment as it provides the greatest potential benefit 

from the application of the proposed decision support tools to support the derivation of an optimal 

wheelset maintenance strategy. 
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3.2 SURVIVAL MODELLING OF WHEELSET DAMAGE  

 

A statistical survival analysis handles life time of individuals since their entrance in the study until 

any designated experience of interest (event/failure) occurs. It considers censored data, useful 

when the interest event does not occur in the observation time, i.e., when the wheelset is taken out 

of service without any damage for preventive maintenance. This section provides preliminary 

explanations for a better understanding on a damage occurrence survival analysis for railway 

wheelsets. Hereinafter in this section, the mathematical theories and definitions are in line with 

Kleinbaum and Klein (2012). 

 

- Survival curves: 

Considering a total live time of an individual T a continuous random variable with probability density 

function f(t), the survival probability S(t) of an individual surviving further than a time t ≥ 0 is given 

by: 

 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑡

 

 
By definition, it is certain that every individual will survive in its initial live time, thus, 𝑆(𝑡 = 0) = 1. 

It is also natural that whenever an individual approaches its final life time it will get closer to a null 

survival probability, thus, 𝑆(𝑡 → +∞) = 0.  

 

Therefore, a theoretical survival curve would be similar to the one represented in Figure 38. Using 

statistical lifetime data for estimating survival curves, a non-parametric statistical method relies on 

a product limit estimator called Kaplan-Meier estimator. This method uses statistical real data for 

calculating survival probabilities and, thus, deals with real-life problems as censored data. 

 

The Kaplan-Meier estimator computes the probability of an individual surviving at some determined 

time (𝑡𝑖) knowing that the individual has survived all the previous time intervals. The probability 

within a time interval is considered the same and its values are determined by the data available 

within each interval. Kaplan-Meier Estimator turns into a product of probabilities, since it considers 

the independence of events between time intervals: 

 

𝑆̂(𝑡𝑖) = ∏𝑃̂(𝑇 > 𝑡𝑘|

𝑖

𝑘

(𝑇 ≥ 𝑡𝑘) 

 

In which: 𝑖, 𝑘 ∈  {1,2,3,…  . 

 

Therefore, the Kaplan-Meier survival curves are step functions obtained from the practical survival 

probabilities derived from the Kaplan-Meier estimators (Figure 38 (b)). They are finite curves 
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depending on the available data last lifetime-length (study end), thus, they usually do not go all the 

way down to zero. 

 

 

Figure 38: Survival curves: (a) Theoretical survival curve; (b) Kaplan-Meier survival curve 

 

In this survival analysis for railway wheelsets, the event studied is the damage occurrence (it is 

only considered wheel damages, since the occurrence of preventive maintenance actions due to 

axle damages is minimal); the time variable is the number of kilometres since each wheelset last 

turning or renewal (𝑘𝑠𝑡); the censoring event is a non-damage turning activity. Figure 39 illustrates 

a follow-up time for six representative wheelsets. Note that, using this type of modelling, every 

individual starts the observation time and every censored data is right-censored. 

 

There is a 𝑘𝑠𝑡  interval around an established 𝑘𝑠𝑡  value determined by each train operating 

company, where preventive turnings occur. After this last interval, all life records of the possible 

surviving wheelsets are censored by the turning activities. 

 

 

 
 

Figure 39: Railway wheelsets follow-up time 
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 Two databases are used in this survival analysis: 

 

i. The first database comes from wheelset turning maintenance operations, of a fleet of 

18 EMU trains of a single type or class, between October 2000 up to June 2015 (i.e. a 

16-year interval). Each unit has four vehicles and each vehicle has eight wheels (i.e. 

four wheelsets). This database is from a Portuguese passenger train operating 

company and took several visits to their maintenance yards to compile it. 

 

ii. The second database is from a British passenger train operating company, having 

wheel data from December 2006 up to July 2012 (i.e. a 7-year interval) and containing 

information of 51 EMU trains of a single type or class. Each unit has three vehicles and 

each vehicle has eight wheels (i.e. four wheelsets). This database was previously 

discussed in Andrade and Stow (2016, 2017a, 2017b), without looking at a survival 

modelling approach. 

 
The Portuguese train operating company does not distinguish between a case of preventive 

maintenance operation or a case of corrective maintenance operation (the case of correcting a 

damage) when doing turning operations, neither registers in which specific wheelset occurs the 

damage. These are all limitations for this survival modelling. 

 

To not include in this analysis survival probabilities mixing damage occurrences with preventive 

turnings, it is only considered the data until 100,000 𝑘𝑠𝑡 in the estimation of the Kaplan-Meier 

survival curve (black coloured in Figure 40) for the Portuguese train operating company, since this 

is the time interval that is known for sure to be out of the preventive turning zone represented in 

Figure 40. However, when this company has to correct wheel damage, they have to turn the whole 

vehicle (because wheel diameters cannot vary much from the opposite side wheel, cannot vary 

much between wheels of the same bogie and wheelsets between bogies). This Kaplan-Meier curve 

is considering every wheel in this situation as a damaged wheel, introducing some bias to the curve. 

These considered survival probabilities were then adjusted to a Weibull distribution (blue coloured 

in Figure 40), a very flexible distribution, widely used in survival analysis since it well represents 

theoretical survival curves. Its parameters, as well as some likelihood criteria can be seen in Table 

8. 

Table 8: Portuguese train operating company Weibull survival curve parameters and some likelihood criteria 

Distribution AIC BIC Log Likelihood Parameter 1 Parameter 2 

Weibull 3556 3568 -1776 1.946 395.984 

 

 
Due to these previous database limitations, a survival analysis on a different train operating 

company was performed with the intention to have a comparison reference for the wheelset 

damage trajectories using a more reliable wheelset damage database. 
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This British train operating company database is more reliable in a way that it does not have the 

previous presented limitations and it has competing wheel damage risks. 

 

When using railway wheelset real operating data, every damage registered in the preventive 

turning kst interval (blue zone in Figure 39) will be overweighting the calculus of the survival 

probabilities using the Kaplan-Meier method, due to the large amount of preventive turning 

censored data in those intervals (please see Kleinbaum and Klein (2012) for better understanding 

of the Kaplen Meier estimator survival probabilities calculus). In a Kaplan-Meier curve, this is 

represented in large time-steps as the ones observed in the Kaplan-Meier curve for the British train 

operating company after around 250,000 𝑘𝑠𝑡  (grey coloured in Figure 40). Therefore, it was 

performed an iterative approach for choosing a maximum kst limit for analysing the data without 

falling into the preventive turning zone. Several models were derived and it was chosen the model 

with the best trade-off between a likelihood criteria and a good theoretical survival curve shape. 

Some of these models can be seen in Table 9 and the model chosen was the Weibull distribution 

using as maximum kst 250 thousand km. This model is depicted in orange colour in Figure 40. 

 

Table 9: British train operating company survival curves parameters and some likelihood criteria. 

Scenario Distribution AIC BIC Log Likelihood Parameter 1 Parameter 2 

250 

Weibull 27125 27139 -13661 1.357 437.598 

Normal 27299 27313 -13648 280.610 135.030 

Log-Normal 27480 27493 -13738 6.099 1.451 

275 

Weibull 27215 27228 -13605 1.331 453.070 

Normal 27443 27456 -13719 289.032 141.052 

Log-Normal 27554 27568 -13775 6.126 1.467 

300 

Weibull 27257 27271 -13627 1.316 461.501 

Normal 27524 27538 -13760 293.501 144.527 

Log-Normal 27586 27599 -13791 6.137 1.474 

325 

Weibull 27274 27288 -13635 1.310 465.046 

Normal 27560 27573 -13778 295.367 146.099 

Log-Normal 27598 27612 -13797 6.142 1.477 

350 

Weibull 27279 27292 -13637 1.308 465.950 

Normal 27570 27584 -13783 295.973 146.631 

Log-Normal 27602 27615 -13799 6.143 1.478 

375 

Weibull 27280 27293 -13638 1.308 466.094 

Normal 27573 27587 -13785 296.219 146.789 

Log-Normal 27602 27616 -13799 6.143 1.478 

400 

Weibull 27280 27294 -13638 1.308 466.240 

Normal 27574 27588 -13785 296.248 146.813 

Log-Normal 27602 27616 -13799 6.143 1.478 
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Observing the grey functions in Figure 40 it is possible to see that the Kaplan-Meier curve does not 

look like a theoretical survival curve and looks like a composition of competing damage risks. 

Grouping the risks as in Figure 41, it is possible to see that the Weibull distributions fit well in the 

survival curves. If doing a serial Weibull function, it is possible to see that it is obtained a much 

better survival curve, which seem to have a similar behaviour has the one derived for the 

Portuguese train operating company case. 

 

 
 

Figure 40: Kaplan-Meier and Weibull survival curves 

 
 

Figure 41: British train operating company competing damage risks survival curves 

0 100000 200000 300000 400000 500000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kilometres since last turning/renewal (kst)

S
u

rv
iv

a
l 
p

ro
b

a
b

il
it
ie

s

Portuguese Kaplan-Meier

Portuguese Weibull

British Kaplan-Meier

British Weibull

British Serial Weibull

(RCF, Flats & Others)

0 200000 400000 600000 800000 1000000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Wheelset Survival Curves

km since last turning/renewal

S
u

rv
iv

a
l 
p

ro
b

a
b

il
it
ie

s

Parametric (Weibull) vs Non-Parametric by Failure Mode

RCF Weibull

RCF K-M

Flats Weibull
Flats K-M

Other Weibull

Other K-M



 

 
 

 

 

Page 70 17/10/2019

Contract No. 777627 

 

Figures 40 and 41 can then be the basis to estimate the transition probability matrixes, namely the 

associated hazard rates to damage occurrence. However, in the next section 3.3, the hazard 

function will be estimated directly (using the Cox Proportional Hazards Model (CPHM) and estimate 

Figure 46). 

3.3 MARKOV DECISION PROCESS APPROACH  

 

A Markov decision process (MDP) approach is applied to railway wheelset maintenance, using 

data of wheelset maintenance activities from a Portuguese train operating company.  

 

- Model formulation 

 

This MDP modelling considers: 

 

(i) The wheel diameter (D) which is a key indicator of the lifecycle stage that a given wheel is 

at a certain epoch (n); 

(ii) The wheel damage occurrence (such as rolling contact fatigue (RCF), flats or cavities) 

which is responsible for the most severe maintenance actions in railway wheelsets, shorten 

significantly their lifecycles; 

(iii) The kilometres since last turning/renewal (kst) operation of each wheelset; 

(iv) Three possible maintenance actions (a = 1, 2, 3): 

 ‘Do nothing’ (a = 1): the wheelset is ok and it goes back to service in the same state; 

 ‘Renewal’ (a = 2): the corrective or preventive maintenance actions would need to 

go beyond the scrap diameter, and so the wheel must be replaced by a new one; 

 ‘Turning’ (a = 3): the wheelset goes to a turning lathe for its shape being replaced 

to values within the standards and it suffers a reduction/loss in its diameter. 

 

The final objective of the present model is to determine an optimal wheelset maintenance strategy 

based on wheel deterioration processes in an MDP framework. The maintenance costs in the long 

run are minimized and it is provided a decision map depending on the wheel diameter, damage 

occurrence and kilometres since last turning/renewal. This decision map is expected to contain 

decisions of predictive maintenance which can be included in the train operating company wheelset 

reprofiling policy. 

 

This MDP is derived over an infinite planning horizon and the MDP is considered stationary, i.e. (i) 

the transition probabilities are assumed to be constant over time, and thus, the Markov transition 

matrices (MTMs) are independent of the epoch at which the transition occurs; (ii) the policy is 

independent of time. 

 

The following ‘State space’ subsection starts explaining the state space used in the modelling. 

Then, subsection ‘Estimation of MTMs’ explains the estimation of the MTMs for each possible 

action. Subsection ‘Reward/cost function’ discusses how the reward/cost functions are 

defined/estimated. The next subsection ‘Optimal policy’ provides the optimal maintenance policy, 
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which maps the best possible action depending on the condition state of the wheelset. Finally, the 

last subsection discusses the main conclusions withdrawn from the analysis of the decision map 

obtained. 

 

- State space 

 
The state space is defined based on three main chosen indicators for the wheelset states: (i) wheel 

diameter (D), (ii) the mileage since the last turning (kst) and (iii) the occurrence of damage. The 

wheel diameter is varying from an initial diameter (Dinitial) of 920 mm until a scrap diameter (Dscrap) 

of 850 mm and the diameter categories are grouped in intervals with amplitudes of 1 mm (i.e. 70 

different levels). The kilometres since last turning/renewal (kst) vary from 0 up to 350,000 km in 

intervals of 10,000 km, which is the considered MDP time step (t). (i.e., 36 different levels). Finally, 

a wheelset can be in a state of damage or not. Consequently, a total of 2590 different states, s ϵ 

{s1, s2, …, s2590}, is defined. Note that the 70 states with damage are kept at the end of the state 

space, but without the extension of each damaged state depending on the kilometres since last 

turning, as the transitions from damaged states to non-damaged states are compulsory, because 

once the damage is detected, it must be removed. 

 

- Estimation of MTMs 

 

An MTM has to be defined for each possible action. This section is divided in three subsections 

explaining the estimation of the ‘Do nothing’ MTM (P1), the ‘Renewal’ MTM (P2) and the ‘Turning’ 

MTM (P3). As explained earlier, this study considers the wheel diameter (D) as the main indicator 

of the wheel’s lifecycle stage. In this analysis and as suggested in Figure , the wear in the wheelset 

- measured as the diameter loss due to wear (ΔD) - is assumed to be independent of the wheel 

initial diameter after a renewal or reprofiling. This assumption is reasonable as the hypothesis of 

independence cannot be rejected at a significance level of 0.05. 
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Figure 42: Diameter loss due to wear (ΔD) for different diameters (D). 

 
Considering a homogenous Markov chain, the transition matrix is decomposable into several sub-

transition matrixes – in a diagonal block form (Yin and Zhang, 2006). For a Markov chain with a 

finite but large state space, the decomposition of the transition matrix tends to follow the most 

attractive approach. Having said that, the underlying problem of estimating MTMs can be divided 

into sub-problems that can be solved independently. This kind of approach will be followed in the 

next subsections with the estimation of sub-transition matrices. 

 

- ‘Do nothing’ action (a=1) 

 

The ‘Do nothing’ action considers that the only possible way to increase a wheel’s diameter is 

through renewal. Furthermore, as data suggests, abrupt decreases in diameter (due to wear) are 

very unlikely to happen. Therefore, a simplification is considered where the only possible transitions 

for a given state (not considering damage states transitions) is to move to a state of diameter 

immediately below (with probability ) or stay in the same state (with probability 1 - ), see Figure 

43 for a schematic representation. 
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Figure 43: Transitions between states without damage depending on the parameter  for the ‘Do nothing’ action, 
adapted from Braga and Andrade (2019). 

 

Regarding the tread change diameter due to wear, it is possible to predict the mean value (  ̅̅ ̅̅ ) 

with the Markovian approach each time step of 10,000 km as 

 

( ) 0n

nD  X P ΔD  

 

To derive these scalar mean values, the following variations in the wheel diameter for the wear 

states were considered  

 
T

0 1 2 69 ( )mmΔD =  

 

These were the possible variations for the wheelset diameters derived from the diameter state 

representative values considered in the sample (i.e. diameter categories mean values from   initial = 

919.5 mm up to   scrap = 850.5 mm). 

 

The initial state of the wheelset is: 

 

 0 ( 0) ( 1) ( 69)P D P D P D     X  

 

Algebraically, considering the chosen transition matrix (with zeros in all entries that do not belong 

to the diagonal or upper diagonal), it is possible to derive, for several values of  in a grid from 0.05 

up to 0.5 and considering the n-step transition probabilities (i.e., the probability that a process in 

state i will be in state j after n additional transition), several lines and see which one best fits the 

distribution. From a quick inspection, the one with  = 0.35 seems to be providing the best 

approximation to the black dashed line. In fact,  = 0.36 (dashed line) provides the closest fit to the 

regression line, according to the ordinary least squares for the slope of the simple linear regression 

without an intercept (Figure 44). Note that the assumption of not including an intercept (or in other 

words assuming that the intercept is equal to zero) is aligned with no wear, that is, ΔD = 0, when a 

wheelset is new or just turned and it has no kilometres since last turning/renewal. Finally, the value 

of  = 0.36 is chosen. 
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Figure 44: Diameter loss due to turning (ΔD) with kilometres since turning/renewal, applying Markovian approaches 

and linear regression without intercept 

 
Next, transition probabilities to states with damage must also be derived. The main assumption is 

that a wheel stays damaged without a change in its diameter, since, in theory, once wheelset 

damage is detected the vehicle must be removed from service and the wheelset reprofiled. 

Therefore, transitions from wheels without damage to damaged states are schematically 

represented in Figure 45. 

 

 
 

Figure 45: Considered transition probabilities to states with damage, adapted from Braga and Andrade (2019) 

 

For deriving the damage probabilities, a Cox Proportional Hazards Model (CPHM) is implemented 

(Cox, 1972; Cox and Oakes, 1984). Due to the database limitation providing reliable information 

regarding the damage occurrence, another database from previous references (Andrade and Stow, 

2016, 2017a, 2017b; Braga and Andrade, 2019), and from a different train operating company, is 

used for deriving the CPHM.  
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This model is a regression-type approach to survival curves, whenever the use of covariates 

(categorical or continuous) is needed. In this case study, this model is used for deriving the survival 

probabilities of a wheel given its diameter value. 

 

The hazard function h(kst, D) in the CPHM for a wheelset (one observation) at a given value of 

𝑘𝑠𝑡 = 𝑘 and D = d can be calculated as: 

 
( )

0( , ) ( ) dh k d h k e    

 

In the hazard equation above, the covariate is the tread diameter (D) and its coefficient 𝛽 measures 

its size effect. The quantity 𝑒𝛽 is the hazard ratio linked to the covariate D, and it was shown to be 

statistically significant, with the upper term of the 0.95 confidence interval being 0.982 (slightly 

below 1), indicating that as the tread Diameter (D) increases, the hazard decreases and, hence, 

length of survival increases, i.e. new wheelsets have longer survival than wheelsets whose 

diameter is close to the scrap diameter.  

 

The cumulative hazard function H(kst, D) in the CPHM for a wheelset (one observation) at a given 

value of 𝑘𝑠𝑡 = 𝑘 and D = d can be calculated as: 

 

 
( )

0( , ) ( ) dH k d H k e    

 

In both equations above, ℎ0(𝑘)  and 𝐻0(𝑘)  are baseline and cumulative baseline hazards, 

respectively, which are obtained when the value of the covariate d is set to 0 in the corresponding 

equations. Also, for a given wheel:  
exp{ ( )}

0( , ) ( ( )) dS k d S k   

 

The equation above shows how the Cox Model computes the survival probabilities based on a 

survival function 𝑆0(𝑘) corresponding to the baseline hazard ℎ0(𝑘). The survival probability, for a 

fixed wheel diameter, at a given kst = k represents the probability of survival beyond k, i.e.: 

 

( ) ( ) , 0S k P kst k k    

 

Starting from the survival curves, it is more intuitive to understand the computation of the hazard 

rates. The hazard function at a fixed diameter, h(kst), assesses the instantaneous risk of failure at 

kst = k, conditional on survival to that kst or in mathematical notation: 

 

0

Pr[( )] ( ) '( )
( ) lim

( ) ( )k

k kst k k f k S k
h k

k S k S k 

  
   


 

 

The equation above relates the hazard function to the survival function. For this work, hazard rates 

derived from the CPHM are displayed in Figure 46, where the line closer to the origin (with lowest 
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hazard rates) corresponds to the hazard function for the highest tread diameter representative 

value,   initial of 920 mm, and the upper curve corresponds to the hazard function for the lowest tread 

diameter representative value,   scrap of 850 mm. 

 
Figure 46: Estimated survival probabilities per diameter group representative values with kilometres since last turning. 

 
 

 
The probability of occurring damage in a wheel of a given diameter at a certain kst is taken as 
simply the discretized values of hazard curves in Figure 46. 
 

A sub-transition matrix for the damage probabilities, considering all 2520 states without damage to 

the 70 states with damage can be represented in the following way: 
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It has been well accepted that damage occurrence is considered independent of wear (ΔD), hence 

it follows that the joint probability of damage and wear is equal to the product of the marginal 

probabilities, as follows: 

 

( ) ( ) ( )P wear damage P wear P damage    

 

Therefore, the sub-transition matrix for wear needs to be modified so that probabilities of damage 

are incorporated. The non-zero entries of the matrix can be computed as: 

 

{
 
 

 
  𝑖,𝑖+ 0 = (1   ) (1   (𝑑𝑎 𝑎𝑔𝑒))          ; 𝑖 = 𝑗 +  0𝑘

 𝑖,𝑖+ 1 =  (1   (𝑑𝑎 𝑎𝑔𝑒))                      ; 𝑖 = 𝑗 +  0𝑘                       ;  𝑗 = 1,2,…6  ; 𝑘 = 0,1,… ,34

 𝑖,𝑖+ 0 = 1   (𝑑𝑎 𝑎𝑔𝑒)                              ; 𝑖 =  0(𝑘 + 1)

 𝑖,𝑖 = 1   (𝑑𝑎 𝑎𝑔𝑒)                                    ; 𝑖 = 2521, 2522,… , 25 0
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In a matrix form, the final MTM for the ‘Do nothing’ action (P1) is a 2590 by 2590 matrix composed 

by the sub-transition matrices in a diagonal form, as follows: 
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- ‘Renewal’ action (a=2) 

 

Concerning the ‘Renewal’ action, regardless of the current state of the wheel (damaged or 

undamaged), transitions to the initial state are assumed to be certain, as described in Figure  47. 

 

 
 

Figure 47: Transitions between states for the ‘Renewal’ action, adapted from Braga and Andrade (2019). 

 
Therefore, the MTM for the ‘Renewal’ situation (P2) is a 2590 by 2590 matrix as follows: 
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- ‘Turning’ action (a=3) 
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The possible transitions between states for the ‘Turning’ action, in theory, are schematically 

represented in Figure  48. 

 

 
 

Figure 48: Transitions between states for the ‘Turning’ action, adapted from Braga and Andrade (2019). 

When turning a wheelset, there is a distinct loss in the diameter due to turning (reprofiling of the 

wheel) if it is a situation of correcting damage (e.g. wear and surface fatigure damage) or if it is a 

situation of preventive turning. In the case of correcting damage, the diameter loss tends to be 

significantly larger on average and with a higher dispersion as depicted in Figure  from Braga and 

Andrade (2019). 
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Figure 49: Histograms of the loss in diameter due to turning (ΔDT) in a wheelset: (a) with damage and (b) without 

damage (Braga and Andrade, 2019) 

 

The Portuguese train operating company database does not differentiate between turning 

situations of correcting damage or not. Due to this database limitation, the diameter loss due to 

turning (ΔDT) probability distributions for damaged and undamaged wheels were considered the 

same as in Braga and Andrade (2019). 

 

The probabilities represented in Figure  49 withdrawn from Braga and Andrade (2019) were 

calculated using the relative frequency from past samples as an approximation of the transition 

probabilities, that is: 

( )
jn

p turning
N

  

In which nj is the number of wheelsets that transit to a class j of diameter loss and N is the total 

number of wheelsets. 

 

The MTM for the ‘turning action’ assumes that the transitions to next states are limited, meaning 

that a transition from a state to another one with a great loss in the diameter does not happen at 

some point (according to Figure  49, it is defined 30 mm as the maximum loss in diameter possible). 

Therefore, regarding transitions from one state to another, the probabilities are composed by zeros 
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to states before the current one and zeros for states after the current one that the ‘turning’ action 

‘cannot reach’. 

 

When a wheelset is turned, it goes back to a state where kilometres since last turning/renewal (kst) 

are zero, and if it has damage it goes to a state without damage, since once the damage is detected 

it must be removed. As it is not possible to turn a wheelset beyond the scrap diameter, when the 

wheelset is in a scrap diameter state, at some point of its kilometres since last turning (kst), and 

the histograms of Figure  49 (a) indicate diameter losses that go beyond the scrap diameter for that 

final state, the probabilities of the remaining transitions are summed up becoming the probability 

value for the wheelset to stay at the final state, that is, the scrap diameter. Having said that, it is 

possible to compose the sub-transition matrix for the ‘turning’ action from states without damage 

(PTND): 
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In the same way, using now the probability values withdrawn from Figure  49 (b), it is possible to 

compose the sub-transition matrix for the ‘turning’ action from states with damage (PTD): 
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Finally, the MTM when the ‘Turning’ action is chosen (P3) is composed as follows: 
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- Reward/cost function 

 

As this problem used a reward maximization function to derive the expected total discounted value 

rewards, the values used to represent the costs of the maintenance operations must be negative 

(Chadès et al., 2014). To derive the reward/cost function, a reward vector (q) for each action chosen 

(a = 1, 2, 3) is specified. 

 

It is assumed that the ‘Do nothing’ action (a = 1) does not hold any operational cost. However, it is 

important to guarantee, due to the state space adopted constraints, that when the wheelset reaches 

states with diameter equal to the scrap diameter, kilometres since last turning/renewal (kst) of 

350,000 km or damaged states, other option different from ‘Do nothing’ is chosen. This is done by 
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setting at these critical states cost values larger than the ones used in the remaining actions. For 

these states, it was assumed that values of 10,000 € should be assigned as follows: 
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For the ‘Renewal’ action (a = 2), a value of -800 € is set, regardless of the state a wheelset is, 

hence, the reward vector is as follows: 
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Turning a wheelset without damage (wheel states without damage) is set as having a cost of 50 € 

while doing turning for correcting a damaged wheelset (wheel states with damage) is set as having 

a cost of 150 €. However, there are some critical states where a ‘Renewal’ action is needed. Those 

cases are the ones when the scrap diameter is reached and, for the MDP does not ‘choose’ a 
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‘Turning’ action but instead a ‘Renewal’ action, they are ‘penalized’ with a cost of 10,000 €. 

Summing up, the reward vector for the ‘Turning’ action is as follows: 
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- Optimal policy 

 

An optimal policy is computed. The optimal policy of the decision process associated with 

maintaining a railway wheelset can then be organized in a graphic table for all states (damaged 

and undamaged) with the evolution of the kilometres since last turning (kst), as shown in Figure  

50 (a) and (b). 
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Figure 50: Map of decisions for wheelsets with (b) and without (a) damage with the evolution of the kilometres since 
last turning (kst). 

 

By analysing Figure , one can see that the transition probability methods adopted and reward 

values were chosen in the section ‘Reward/cost function’ resulted in actions that were intended (a) 

for the undamaged wheelsets and (b) for damaged wheelsets. For the last, Figure (b) shows that 

only actions of ‘Turning’ or ‘Renewal’ are assigned, being the ‘Renewal’ actions recommended for 

the last states where the ‘Turning’ action would result in diameter values below the scrap diameter.  
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For the undamaged wheelsets, Figure 50 (a) indicates that the recommended actions change 

dynamically with kilometres since last turning (kst) and wheelset diameter (D). It helps to define a 

critical point, say k*, as being the lowest kst such that turning action is recommended (here on 

coordinates kst = 240,000 km and D = 864 mm). The grey pattern, which covers part of the right 

side, suggests that turning actions should be performed earlier as the diameter decreases. This 

relationship holds until approximately the critical point k*. For diameters below k* (864mm or closer 

to the scrap diameter), the strategy shifts to allowing more kst. Indeed, for diameters below 858 

mm, the best strategy is to not perform turning at all and let the wheelset wear out until scrap 

diameter. Hence, if one imagines a line connecting k* to the first grey square on top (kst = 350,000 

km and D = 920 mm) and a second line connecting k* to the last grey square on bottom  

(kst = 350,000 km and D = 858 mm), it is evident that both signs and absolute values of the 

corresponding slopes are different. For newer wheelsets until about the point D = 870 mm, there is 

a slow decrease of kst while the decrease in D occurs at a higher rate, meaning that those wheels 

can support long periods without undergoing “Turning” actions. Then, from D = 870 mm down to k* 

diameter, there is a fast decrease of both kst and D. Below k* diameter, i.e. wheelsets whose 

diameters are close to scrap diameter, the “slope” changes sign and there is a fast increase of kst 

as D decreases. 

 

Therefore, Figure 50 serves as a guideline for condition-based maintenance, that is, depending on 

the diameter (D), kilometres since last turning (kst) and whether or not damage has occurred, it 

provides the optimal strategy, i.e. the set of action that minimizes the total costs for each defined 

wheelset state. However, such optimal strategy/policy may not be effective in practice, as this 

requires train operating companies to have exceptional maintenance management and control over 

their assets, which might be unrealistic. Therefore, a modification of the policy, making it vary 

across only one parameter, in this case, kilometres since last turning (kst), can be compared with 

the optimal policy’s expected cost so that an “easy-to-apply” maintenance strategy that has cost 

closest to the optimal can be implemented.  

 

For this new strategy, some entries of the undamaged policy in Figure 50 (a) are modified according 

to the following rule: for a fixed “kilometres since last turning” (kst) value, all squares at that column 

or before that value’s column will be filled with 1’s (corresponding to action ‘Do nothing’), all the 

squares after that value’s column will be filled with 3’s (corresponding to action ‘Turning’), with the 

exception being the squares in black (action ‘Renewal’), which will remain the same as in the 

optimal policy. Therefore, with the exception of the renewal squares, all the squares across the 

same value of “kilometres since last turning” (kst), i.e., all the entries on the same column, will have 

either 1 or 3, independently of the diameter (D). For example, if the new strategy sets the turning 

action to be performed after 150,000 kst, then all squares before and at column 150,000 kst will be 

filled with 1, or colour white, and all other squares will be filled with 3, or colour grey, (except the 

ones originally marked with 2, which remain black).  

 

Under this framework, 21 different values of kst were used to build new policies and had their 

expected long-run cost extracted (no changes were made to the transition probability matrices or 

cost vectors, inputs of MDP approach). The cost results for these 21 different policies can be 
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compared with the long-run expected cost arising from the optimal policy displayed in Figure  51. 

To facilitate the comparisons, the optimal solution cost is set to 1, and all other policies’ costs (which 

are higher) are displayed as percentages of increase compared to the optimal one, as shown in 

Figure 51. 

 
Figure 51: Comparison of optimal policy cost with costs arising from different policies based on ‘kst’ cut-offs. 

Figure 51 compares the results of the different kst “cut-off” policies for 21 different values (empty 

circles) of kilometres since last turning, namely from 150,000km to 350,000km in steps of 

10,000km, to the long-run average cost of the optimal policy (displayed as a red line). The optimal 

policy is a line, not a point, since it is dynamic in the sense that there’s no kst “cut-off” as it considers 

a policy involving both kst and D. The optimal policy has the lowest expected long-run cost, followed 

by the policy which sets the “cut-off” for kst as 350,000km, with has an associated average cost 

about 1.1% higher than the optimal one. Policies with “cut-offs” in the neighbourhood of 350,000km, 

i.e., 330,000km and 340,000km, have also similar costs, about 1.5% and 1.4%, respectively, higher 

than the optimal. In general, policies with “cut-offs” inside the interval ]300,000km, 350,000km] 

have associated long-run average cost within 2.5% of the optimal policy’s cost and, hence, perform 

fairly good.  

 
- Main conclusions of the MDP approach 

 
A data-driven model based on the MDP approach was implemented in order to provide the train 

operating company with a better decision-making process in terms of wheelsets’ turning and 

replacement policy. The change in tread diameter, kilometres since last turning and damage 

occurrence were used to define a discrete state space with a total of 2,590 states. A set of 3 

possible actions were considered to account for all possible decisions that can be undertaken after 

a wheelset is measured, namely: (1) ‘Do nothing’, (2) ‘Renewal’ and (3) ‘Turning’. Reasonable 

values for the cost vectors were set and optimization in terms of minimization of costs was 

performed with the support of the MDP Toolbox (Chadès et al., 2014).   
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The main result of this work is a dynamic map of decisions, in terms of actions to be taken for each 

discretization of kilometres since last turning (kst) and wheelset diameter (D). Identification of a 

critical point k*, as tipping point for turning decisions, suggested three main trends: for wheelsets 

in earlier stages of life-cycle (until about 870mm of diameter), there is a slow decrease of kst as D 

decreases at a higher rate, hence, turning actions can be postponed to higher kst without the need 

of constant measurements of the diameter (the “slack” values for diameter lie within a big interval, 

in this case ranging from 920mm down to 870mm, or a 50mm slack). Then, from D = 870 mm down 

to k* diameter of 864 mm, there is a fast decrease of both kst and D, so an efficient and more regular 

monitoring on the values of the diameter would be necessary to guarantee that turning actions 

would be performed at the optimal configuration presented in Figure 50 (in this case, the “slack” 

values are constrained to a small interval of only 6mm). Finally, for wheelsets which diameters are 

less than k* diameter of 864 mm, or close to scrap diameter, there is a fast increase of kst as D 

decreases, and the recommendation is to allow the wheelset to wear out until scrap diameter, as 

many frequent inspections would be necessary to guarantee that turning action would still be 

captured in an “optimal” setting, and hence, it is unlikely that turning at this point would be cost-

effective. 

 

Another contribution of this work concerns the ease of policy implementation. As a dynamic policy 

contemplating two parameters might be hard to implement in the context of a train operating 

company, it is interesting to compare the optimal results with those obtained from simpler policies. 

Hence, policies based on 21 different “cut-offs” values for kilometres since last turning were tested 

so that, for a given value of the “cut-off” (e.g. 250,000km), all actions before or on that mark would 

correspond to ‘do nothing’ and all actions after that mark would result in ‘Turning’. The exception 

would be the actions assigned ‘Renewal’ in the optimal policy, which were kept the same. In this 

framework, no consideration of the diameter would have to be made by the maintenance team in 

order to decide between ‘Turning’ or ‘Do nothing’, as kst would be the only input needed. Results 

displayed in Figure 51 revealed that, although the optimal solution had the lowest expected long-

run cost, a good strategy would be to set the “cut-off” for kst as close as possible to 350,000km, 

independently of the diameter. This strategy would increase the average long-run cost by only 

about 1.1%. In general, policies with “cut-offs” within the interval ]300,000km, 350,000km] perform 

fairly good and are recommended. 

 

By inspecting the different cost values in Figure 51, it is not clear that, in the presence of states for 

which kst would exceed 350,000km, the optimal configuration would lead to higher values of kst 

associated with turning recommendation. In fact, considering the train operating company’s policy, 

even the recommendation of turning at 350,000km translates into doubling the amount of kst that 

is currently established in the maintenance strategy. In this context, investigating further the kst of 

350,000km may be unrealistic, hence the limited state space based on maximum kst of 350,000km 

is taken as one of the limitations of this study. As a second limitation, although the state space 

described a range of different configurations involving kilometres since last turning, wheel diameter 

and occurrence of damage, it did not control for the evolution of other important variables such as 

the flange thickness and height as well as the angle inclination. Inclusion of these variables is 
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suggested as a future step, as the current technical standard imposes limits to these additional 

parameters.  
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3.4 TACTICAL MAINTENANCE PLANNING 

This section presents the application of the tactical maintenance planning model to the case study 

of Fertagus. First, some details on the Fertagus train operating company are provided and the 

second subsection presents problem specifications and values for all parameters. Cost values are 

given in monetary units for the sake of confidentiality. Therefore, in order to convert to €, a 

multiplication coefficient between 1 and 10 must be used. 

 

Fertagus train operating company 

 

Fertagus trains run on a line of 54 kilometres that cross the “25 de Abril” bridge; and stop at 14 

stations. Total travel duration between Roma-Areeiro (in Lisbon) and Setúbal is 57 minutes. No 

train can be pulled out of service to go to maintenance if there is no backup train available, and 

thus Fertagus owns 18 train units, when only 17 are necessary to perform the current operation. 

The question of whether or not this could be done differently is out of the scope of the present work 

and is left for further research. 

 

Fertagus maintenance yard comprises a total of 10 lines, though they are numbered from 1 to 12, 

as lines number 3 and 4 were never built but were in the original design of the maintenance yard. 

Out of these 10 lines, only 3 are used to perform maintenance activities, respectively lines 10, 11 

and 12. The other lines are used for testing or parking. Table 10 provides information on the use 

that is given to each line in Fertagus maintenance yard. 

Table 10: Use of the lines in Fertagus maintenance yard 

Line numbers Use in the maintenance yard 

1 - 2 Several tests 

5 - 8 Parking 

9 Cleaning operations and conservation cleaning 

10 - 11 Maintenance with catenary 

12 
Maintenance without catenary (for pantograph 

replacement) 

 
All lines used to perform maintenance activities (lines 10, 11 and 12) are indoors. On the contrary, 

line number 9 which is dedicated to cleaning is not covered because this maintenance activity is to 

be performed outside. Fertagus maintenance yard also performs wheelset turning within the 

maintenance yard in an underfloor wheel lathe. 

 

- Specific input parameters 

In order to model the case study, information on Fertagus maintenance activities was gathered in 

order to have the correct inputs for the parameters of the mathematical model, through meeting, e-

mails and phone calls. The maintenance activities planned by Fertagus are summarized in Table 

11.  
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Table 11: Maintenance activities planned in Fertagus case study. 

Maintenance 

activity 
Activities performed Period 

Time 

needed 

Work force 

required 

ETS Mostly inspection activities Every 5 weeks 1.5 – 2 h 4 

VEq 
Inspection of motor block, pressure check, 

etc. 
Every 37,500 km 6 h 4 

VP Doors check-up Every 150,000 km 6 h 4 

VL Lubrication check-up Every 120,000 km 4 – 6 h 4 

VEI Electric system check-up Once a year (before Winter) 40 h* 4 

VS Biannual check-up 
Twice a year (beginning of 

Spring and end of Summer) 
12 h 4 

TRF Wheelsets turning Every 120,000 km 16 h 2 

V1 Some parts of the pantograph are maintained Every 300,000 km - 4 

* Not continuous, i.e. maintenance task is split in different days. 

 

The parameters of the mathematical model come from the Portuguese train operating company 

(Fertagus) and they can be found in Tables 11 – 14. There are eighteen trains so 𝑈 is a set of 

integers from 1 to 18; there are sixteen maintenance activities that can be performed in Fertagus 

maintenance yard, which implies that 𝐼 is a set of integers from 1 to 16; the planning horizon of the 

maintenance planning is set to a year, and since the time unit is a week, 𝑇 is a set of integers from 

1 to 53; and finally, four different spare parts are stored in Fertagus maintenance yard so 𝑃 is a set 

of integers from 1 to 4. 

 

In Table 12, all parameters depending on the maintenance activities 𝑖 are summarized. The first 

line includes the name of maintenance activity 𝑖1 (ETS), its cost is 614,42 monetary units. Then, 

the period of the ETS maintenance is displayed in weeks and is equal to five weeks. This means 

that maintenance activity 𝑖1 is due every five weeks. Then, both the working load and the duration 

of the maintenance activity i1 are given. ETS maintenance is a 10 person-hours maintenance 

activity and lasts 2,5 hours long. Finally, the set of maintenance lines where maintenance activity 

𝑖1 can be performed is displayed, i.e. it can be performed either on line 11 or on line 12 of Fertagus 

maintenance yard. For instance, wheelset turning (TRF) is maintenance task number 5 (𝑖 ). 

 

Parameters that depend on the spare parts   are displayed in Table 14. In the first line, information 

on the spare part  = 1 is given: its name, its cost per week, the number of weeks needed to 

maintain the spare part, and the maximum number of spare parts according to the maintenance 

yard storage area.  

 

Table 13 provides information on the initial conditions of Fertagus train units, i.e. the time intervals 

(in weeks) between the last maintenance activity 𝑖 and the beginning of the planning horizon for 

train unit 𝑢. It must be highlighted that all values of 𝑂(𝑢, 𝑖) can be deduced from Table 13. For 

example, 𝑂(𝑢2, 𝑖 ) which corresponds to the last time maintenance activity 𝑖  was performed on 

train 𝑢2, is set to 23 weeks, meaning that maintenance activity 𝑖  was last time conducted 23 weeks 

before the beginning of the planning horizon. 
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Table 12: Parameters for each maintenance activity i in Fertagus case study. 

Maintenanc

e activity (𝑖) 

Cost of 

maintenance 

activity 𝐶(𝑖) 

Period  

(in weeks) 𝑇(𝑖) 

Amount of work 

(in hours) 𝑓(𝑖) 

Duration  

(in hours) 𝑑(𝑖)   

Lines’ 

set 

𝐿(𝑖) 

1 614.42 5 10 2.5 {10, 11} 

2 1,720.37 16 28 7 {10, 11} 

3 1,018.98 53 14 3.5 {10, 11} 

4 829.17 63 14 3.5 {10, 11} 

5 2,522.22 63 42 21 {10, 11} 

6 815.28 63 14 4.6 {10, 11} 

7 - 11 3,516.44 53 12.4 3.1 {10, 11} 

12 793.29 53 14 7 {10, 11} 

13 - 14 396.64 53 3.5 0.88 {12} 

15 56.25 26 1 1 {10, 11} 

16 2,457.68 136 40 10 {12} 

 

Table 13: Time interval (in weeks) between last maintenance activity I and beginning of the planning horizon for train 

unit u, for Fertagus case study. 

Train unit  

(𝑢) 

Maintenance activity (𝑖) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 4 3 19 50 46 25 40 40 40 40 40 13 16 16 19 45 

2 2 5 26 7 42 25 40 40 40 40 40 13 16 16 9 40 

3 4 0 37 19 20 24 36 36 36 36 36 12 16 16 16 54 

4 3 10 40 30 15 20 35 35 35 35 35 12 16 16 18 56 

5 3 15 16 16 15 24 15 15 15 15 15 12 15 15 24 56 

6 0 14 2 42 36 23 14 14 14 14 14 11 15 15 3 54 

7 3 15 18 23 49 23 13 13 13 13 13 11 15 15 17 47 

8 0 1 30 30 51 22 12 12 12 12 12 10 14 14 4 55 

9 1 14 38 14 47 22 12 12 12 12 12 10 14 14 11 46 

10 1 0 5 37 39 21 11 11 11 11 11 9 14 14 0 35 

11 3 9 43 16 44 21 10 10 10 10 10 9 13 13 5 41 

12 4 11 52 45 43 20 7 7 7 7 7 8 13 13 6 35 

13 2 10 17 3 45 20 6 6 6 6 6 8 13 13 18 41 

14 2 14 13 48 46 19 5 5 5 5 5 7 12 12 16 35 

15 4 6 33 22 40 19 4 4 4 4 4 7 12 12 8 49 

16 0 1 46 45 36 18 3 3 3 3 3 6 12 12 23 37 

17 3 15 39 55 48 18 2 2 2 2 2 6 11 11 20 43 

18 4 12 28 35 35 17 1 1 1 1 1 5 11 11 14 44 
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Table 14. Parameters for each spare part p in Fertagus case study. 

Spare part 

p 
Spare part type 

Cost of having 

spare time per 

week 𝑃( ) 

Maintenance 

Duration (in weeks) 

𝑅( ) 

Maximum amount 

of spare parts 𝐴( )   

1 Wheelset 104.17 1 20 

2 Trailer bogie 1,041.67 0 20 

3 Motor bogie 1,041.67 1 20 

4 Pantograph 416.67 2 20 

 
Regarding the values of parameter 𝑞(𝑖,  ), i.e. the number of spare parts   required to perform 

maintenance activity 𝑖, as the majority of sixteen maintenance activities do not require spare parts, 

the majority of values are zero. However, some maintenance activities of Fertagus railway 

operating company still need spare parts, namely: 𝑞(5,1) = 𝑞(16,2) = 𝑞(16,3) = 𝑞(16,4) = 1. 

 

Finally, all constants of the mathematical model for the Fertagus case study are provided. The 

planning horizon 𝐻 is equal to 53 weeks. The shunting cost is set to 5 000 monetary units (this 

value was initially given as an approximation and will be subject to a sensitivity analysis in next 

section). The maximal working load 𝑘 is 160 person-hours, and is calculated as the product of the 

number of persons working in Fertagus maintenance yard by the number of working hours per day 

times the number of useful days of the week, i.e. 4 persons   8 hours   5 (days) = 160 person-

hours. The maximal working time per week is 40 hours and is calculated as the product of the 

number of working hours per day times the number of useful days in a week, i.e. 8 hours   5 (days) 

= 40 hours. 

 

Results and discussion 

 

This subsection analyses the results of running the model for a small size case study of a 

Portuguese train operating company (Fertagus) described in Section 4. Firstly, it starts by analysing 

the optimality gap over computational time for the best solutions found, showing that after a 

computational time of 1 hour an acceptable optimality gap of 0.63% is achieved. Then, it presents 

the objective function and the distribution of the different cost components (A, B, C and D) of the 

objective functions for the optimal solution after 1 hour of computation. Finally, last subsections 

provide a sensitivity analysis of the shunting cost component and the maximal working time per 

week. 

 

- Analysis of the optimality gap versus the computation time 

As the size of the problem increases, the computational time to obtain the optimal solution also 

increases. However, a feasible solution can always be found within few minutes, with an optimality 

gap. The closer the optimality gap is to zero, the better the solution is. In the explored case study, 

it is interesting to study the evolution of the optimality gap with respect to computational time in 

order to know when the solution can be considered “acceptable” (i.e. lower than a certain optimality 

gap). 
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In this analysis, the computational time varied from 1 minute to 24 hours: 1 min, 5 min, 10 min, 15 

min, 30 min, 45 min, 1 h, 1.5 h, 5 h, 10 h and 24 h. Figure 52 shows the graph of the optimality gap 

over the computational time. This graph shows that the longer the computational time, the smaller 

the optimality gap, though this decrease is not linear. The goal of this analysis is to be able to select 

the smallest computational time whose corresponding optimality gap is acceptable. It can be seen 

on the graph that after a calculation time of one hour (1 h), the optimality gap around 0,63% is 

achieved, and when the computational time is increased to one day (24 h), the optimality gap 

becomes slightly less than 0,60%, which is better (or lower), but may not be worth of the additional 

time spent to minimize the cost. Therefore, the computational time was chosen to be set to one 

hour for all further analysis in this section. Table 15 exhibits the detailed values of the computational 

time and the associated optimality gap. 

Table 15. Values of computational time and corresponding optimality gap. 

Computation time (s) Optimality gap (%) 

60 (1 min) 2.67 

300 (5 min) 2.67 

600 (10 min) 2.30 

900 (15 min) 1.55 

1,800 (30 min) 0.97 

2,700 (45 min) 0.97 

3,600 (1 h) 0.63 

5,400 (1.5 h) 0.63 

18,000 (5 h) 0.63 

36,000 (10 h) 0.63 

86,400 (24 h) 0.60 

 

 

Figure 52: Optimality gap (%) with respect to computational time (s). 
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- Cost components for the optimal value of the objective function 

After one hour of computation, the best solution found has a value for the objective function equal 

to 1,664,750 monetary units. This total cost is divided into the four cost components A, B, C and D 

whose values are displayed in Table 16. 

Table 16. Distribution of the different cost components in the objective function (after 1 hour of computation) 

Cost component Value (monetary units) 
Percentage of the total cost 

(%) 

A (maintenance activities 

cost) 
670,495.00 39.89 

B (shunting cost) 1,005,000.00 59.78 

C (spare part cost) 5,521.01 0.33 

D (penalty cost) 15.50 0.0009 

 
Note that the cost component B is the one with the largest impact on the total preventive cost which 

is why maintenance activities are grouped whenever it is possible. The cost component A, which 

is the maintenance activity cost, has the second largest impact. However, it is not a cost that is 

easily changed as it is dependent on the maintenance activities themselves. The cost components 

C and D have smaller influence on the objective function. 

 
This section conducts sensitivity analysis to two main parameters of the model: i) the shunting cost 

and ii) the working time per week. Note that changing the shunting cost will only affect the 

parameter 𝑆, whereas changing the working time per week will affect both the maximum working 

load (𝑘) and the maximum working time (𝑤). 

  

The variation of the objective function compared with the reference case ( 𝑆 = 5,000 ) was 

calculated, considering a computational time of 1 hour. Moreover, the ratio between the objective 

function variation and the shunting cost variation was also computed and it is presented in the last 

column in Table 17. The value for a variation of zero percent is not presented as a division by zero 

would be involved.  

 

For example, a shunting cost variation of +2.0% induces an objective function variation of +1.3%, 

which corresponds to a ratio of 0.65 between the variations. It is interesting to notice that the 

objective function variations exhibit values nearly anti-symmetric, meaning that an increase of 6% 

of the shunting cost component will induce a raise on the objective function of around 3.58%; and 

a similar decrease of 6% in the shunting cost component will also induce a decrease of the objective 

function of around 3.54% (i.e. -3.54% of variation). Nevertheless, it must be said that the values 

induced by a negative shunting cost variation are always slightly higher than the ones induced by 

a positive shunting cost variation. For instance, a variation of the shunting cost of -2% induces a 

total cost variation of 0.90% while a variation of shunting cost of +2% induces a total cost variation 

of 1.30%. 
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Table 17: Sensitivity analysis of the shunting cost and relation between two variations.  

Shunting cost 
(𝑆) 

Shunting cost 
variation (%) 

Objective 
function variation 

(%) 

Ratio between objective 
function variation and 

the shunting cost 
variation 

4,500 -10.0 -5.43 0.54 

4,600 -8.0 -4.12 0.51 

4,700 -6.0 -3.54 0.59 

4,800 -4.0 -2.63 0.66 

4,900 -2.0 -0.90 0.45 

5,000 0 0 - 

5,100 +2.0 +1.30 0.65 

5,200 +4.0 +2.97 0.74 

5,300 +6.0 +3.58 0.60 

5,400 +8.0 +4.46 0.56 

5,500 +10.0 +5.68 0.57 

 
On the working time per week. Current preventive maintenance shifts in Fertagus are of 8 hours 

per day, and five days a week; which corresponds to a current maximum working time in the 

maintenance yard of 160 hours per week, assuming that the preventive maintenance team includes 

4 persons. In order to quantify the impact of the time allocated to preventive maintenance, a 

sensitivity analysis is conducted on the working time per week. It must be highlighted that changing 

the working time per week affects two parameters of the mathematical model which are 𝑘 and 𝑤. 

The time allocated varies from 36 hours to 44 hours; in which 40 is the reference (all values can be 

found in Table 3.18). The allocated person-hours per week and allocated hours per week are 

dependent through the following relation: person-hours per week = (hours per week)   (number of 

persons). In this sensitivity analysis, the number of persons did not change. When the time 

allocated is 36 hours, it finds no feasible solution. On the other extreme, i.e. when the time allocated 

is 44 hours, an optimal solution is found in 2,445.8 seconds (40 min and 45 seconds) with an 

optimality gap of 0%, which means that the calculus stops before the end of the reference 

computational time (1 hour). For an allocated time of 42 hours, the solution is also optimal after 2 

684 seconds (44 min and 46 seconds) with an optimality gap of 0%. There are two possible 

explanations for this; either 160 person-hours working load maybe considered optimal in Fertagus 

case study; or the initial conditions have a lot of influence on the maintenance planning. Indeed, a 

maintenance which is done by four working persons for several planning horizons could lead to 

initial conditions that require a preventive maintenance done by four persons.  

Table 18: Sensitivity analysis of the shunting cost and relation between two variations.  

Allocated hours 

per week 

Allocated person-

hours per week 

Optimality gap after 

1h computation (%) 

Total maintenance 

cost (monetary units) 

36 144 No feasible solution 

38 152 1.84 1,701,030 

40 160 0.63 1,675,360 

42 168 0 1,659,800 

44 176 0 1,659,750 
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Optimizing total costs of preventive maintenance in a train fleet is the aim of the present research 

work, namely by creating a mixed-integer linear programming model for a train operating company. 

The mathematical model was explained in detail and an illustrative example was provided to 

improve reader’s understanding of the model. Then, it was applied to the case study of Fertagus 

train operating company. Details on the maintenance yard configuration (e.g. lines) were discussed 

and two new constraints were added, which represent a contribution to current models (Doganay 

and Bohlin 2010, Bohlin and Wärja 2015). Data for the Fertagus case study was collected, in which 

costs are presented in monetary units for the sake of confidentially, though they maintain their 

relative weight between each other. Although, the final mathematical model was adapted to the 

specific case study of Fertagus train operating company, it can very easily be modified to fit to any 

train operating company’s specifications. Results suggest that after a computational time of one 

hour, the best solution found has an optimality gap of 0,63%, which is considered acceptable. 

Sensitivity analysis on the shunting cost and on the working hours per week were conducted, 

showing that the shunting cost has an important effect in the objective function, and that increasing 

the working hours per week provide even optimal solutions, obtained in less than 1 hour of 

computation. 

 
This mathematical model enables to find an optimal maintenance planning but it is of course user 

input dependent and this is a limitation in any kind of these models. Indeed, if the user inputs do 

not represent correctly the real-life situation, the maintenance planning could hardly be optimal. 

For the Fertagus case study, corrective maintenance activities were still not included in this model, 

though it should be emphasized that Fertagus train operating company has a dedicated team for 

corrective maintenance that works in another shift than the preventive maintenance team. 

Optimizing preventive and corrective maintenance activities together might bring better results than 

optimizing each one separately, though it would increase the size and complexity of the model. 

Moreover, the cost component D has to be improved to be transformed to monetary units. Note 

that the objective function was adapted from Bohlin and Wärja (2015). Although in practical terms, 

it prevents the model to maintenance too early, and thus it prevents from losing life of the 

component by reducing the maintenance cycle. This loss of residual life should be expressed in 

monetary units. It is important to mention that the present model does not take into account the 

availability constraints explicitly, and this is a current limitation of the present model. Although in 

the Fertagus case study, there are more trains than the ones needed to perform the train operations 

in the daily schedule, an operational planning model is still needed to be integrated (with a horizon 

of a week and the modelling of train movements inside the maintenance yard and in the network). 
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3.5 OPERATIONAL MAINTENANCE SCHEDULING 

 

This section 3.5 applies the operational maintenance scheduling model to the Portuguese train 

operating company Fertagus. Again, the train operating company is responsible to operate the 

railway service and for the safety and maintenance of the trains. Their fleet is composed of 18 

trains, from which 17 train units are available for operational services and are intended to cover the 

set of tasks and preventive maintenance actions. The application of the model to this case study 

has the main goal of finding the best feasible solution that outputs a rolling-stock plan for a planning 

period of two days (48-hour period). A representative period was chosen to perform this study.  

 

Appendix B contains all the information needed to run the model for the case study of a Portuguese 

train operating company, namely tables B.1 to B.8 provide values for the parameters used in this 

case study. Table B.1 provides stations name, their corresponding number and their associated 

minimal turning time (in minutes). Table B.2 provides information on the parameter 𝑊(𝑠, 𝑠′), i.e. the 

possible dead-headings between two stations: if the value equals zero, a dead-heading between 

stations s and s’ is not possible; otherwise, its value would be equal to one and a dead-heading is 

possible. Then, Table B.3 provides the distances/lengths (in kilometres) between stations and 

Table B.4 provides the associated durations (in minutes) between stations. Table B.5 provides the 

model constants and Table B.6 provides a small excerpt of the table with all train service tasks. 

The complete table is not presented but is provided in the electronic supplementary material. Table 

B.6 identifies the various tasks on the first column. The next columns give the required number of 

units, the maximal number of units, the departure station, the arrival station, the departure time and 

arrival time of a task. Tasks 1 to 790 are real tasks. The last 30 tasks are beginning and ending 

virtual tasks. Table B.7 provides information on the maintenance tasks that need to be performed 

in the planning period through the parameter  𝑀𝑘,𝑚, i.e. if it is equal to 1, then maintenance task 

m must be scheduled for train unit k. Finally, Table B.8 provides information on the maintenance 

durations and amount of work (work load) for each maintenance task.   

 

The optimal minimum cost is 150128 and it takes 1711.70 seconds (less than half an hour) to 

achieve the optimal solution, which provides a schedule of all railway operations and maintenance 

tasks. The optimal solution provided a different train unit assignment that is currently implemented 

in the company. One aspect that the optimized solution showed is that there is another way to 

assign train units to normal train services, while saving a significant amount in the total distance 

run in dead-headings. Table 19 provides a comparison of the total dead-headings for the case 

study between the current situation and the optimized by the application of the model. It shows that 

the model allows a reduction of the total distance run in dead-headings (206 km per day to 131 km 

per day).    
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Table 19 – Comparison of the total dead-headings for the case study between the current situation and the optimized 
by the application of the model.  

Pairs of Stations Distance (km) Current situation Model application 

Roma-Areeiro – Pragal 11.68 4 4 

Roma-Areeiro – PMC 25.60 2 0 

Coina – PMC 1.70 14 16 

Setúbal – PMC 28.60 2 2 

Coina - Setúbal 26.83 1 0 

Total distance (km) 206 131 

 
 

- Reliability analysis using uncertain durations for maintenance tasks 

This section explores the role of uncertainty in the duration of maintenance tasks, providing a 

reliability analysis of maintenance schedules within the train service operations. This reliability 

analysis has the main objective of assessing the probability of achieving a feasible schedule, given 

the uncertainty associated with maintenance durations. Therefore, the decision maker (the 

maintenance planner) can assess how reliable a given maintenance schedule/plan is and what is 

the impact of the uncertainty in the durations of maintenance tasks in the value of the objective 

function. In the previous example, maintenance durations were assumed to be deterministic 

(constants that are known in advance). In this subsection, they will be modelled as random 

variables to account for their uncertainty, by assigning probability density functions to each one of 

them: MT1, MT2, MT3, …, MT14 from Table A.8. Inspired by common practice in Project Evaluation 

Research Technique (PERT) applications, a generalization of a Beta probability distribution is 

assumed as the distribution of each maintenance duration. Table 20 provides the parameters of 

the probability distributions for the durations of each maintenance task. Estimates for the PERT 

parameters were achieved through interviews and using expert judgement techniques to 

maintenance planners/workers. 

 

Table 20 – Parameters of the PERT probability density functions assigned to each random variable (𝑀𝑇𝑚): minimum 
(a), most likely (b) and maximum (c) parameters.  

Random variables 
Parameters of PERT distributions 

Minimum (a) Most likely (b) Maximum (c) 

𝑀𝑇1 100 150 200 

𝑀𝑇2 300 420 600 

𝑀𝑇  150 210 300 

𝑀𝑇  150 210 300 

𝑀𝑇  200 276 400 

𝑀𝑇  120 186 280 

𝑀𝑇  120 186 280 

𝑀𝑇  120 186 280 

𝑀𝑇9 120 186 280 

𝑀𝑇10 120 186 280 

𝑀𝑇11 300 420 600 

𝑀𝑇12 40 53 90 

𝑀𝑇1  40 53 90 

𝑀𝑇1  45 60 90 
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Figure 53: An example of the cumulative probability function for MT3 (duration of maintenance task m=3), which is 

assigned a PERT probability function with parameters a=150, b=210 and c=300.  

Note that the choice of bounded probability density functions allows the computation of the worst 

and best scenarios. The worst scenario corresponds to the scenario with higher durations for each 

maintenance task, i.e. 𝑀𝑇𝑚 =  𝑚 for all maintenance tasks. The best scenario corresponds to the 

scenario with lower duration for each maintenance task, i.e. 𝑀𝑇𝑚 = 𝑎𝑚 for all maintenance tasks. 

The case study explored was run assuming that each maintenance task has its most likely duration, 

i.e. 𝑀𝑇𝑚 = 𝑏𝑚 for all maintenance tasks.     

 

A design of computer experiments was conducted with the following steps: i) running the worst and 

best scenarios and assess the optimal objective value; ii) running a set of simulated experiments 

(N=60 simulations) using a Monte Carlo simulation procedure to generate random values for the 

maintenance durations for each maintenance task; iii) compute the empirical cumulative distribution 

of the optimal value for the objective function and iv) assess the probability of achieving a feasible 

schedule and the probability that a higher value than the optimal value for the best scenario is 

achieved. 

 

Figure 54 provides the empirical cumulative distribution of the optimal value for the objective 

function for feasible solutions, exhibiting no increase in the objective function for 36.7% (22 out of 

60) of the simulated cases and the maximum increase of +84 in the objective value from 150128 

to 150212. Table 21 provides the main results from the computer experiments run, namely for the 

extreme cases (best and worst scenarios), a ‘most likely’ scenario corresponding to the case where 

all maintenance durations are equal to the most likely duration for each maintenance task (i.e. 

𝑀𝑇𝑚 = 𝑏𝑚 for all maintenance tasks) and an average case which takes the average of all computed 

cases.   
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Figure 54: Empirical cumulative distribution of the optimal value for the objective function.  

Regarding the extreme scenarios, the best scenario revealed no increase in the objective function, 

whereas in the worst scenario, the high maintenance durations made the problem unfeasible. From 

the design of experiments, it was shown that only the worst scenario revealed an unfeasible 

solution, which indicates that the expected probability of achieving an unfeasible solution should 

be lower than 1/60. In fact, from our initial tests, it is very likely that it is much lower than 1/60 as 

the PERT distributions assign very low probabilities to extreme values (𝑎,  ). In further research, a 

rare-event simulation procedure within an adaptive design of experiments will be defined, in order 

to improve the way this probability is assessed using less computational time needed.  

Table 21: Objective Function values and computational times for the ‘most likely’ scenario, the ‘best’ scenario, the 
‘worst’ scenario and the average case. 

Simulations Objective Function value Computational time (s) 

‘Most likely’ scenario 150128.00 1711.70 

‘Best’ scenario 150128.00 2492.20 

‘Worst’ scenario No feasible solution 27.0 

Average 150137.83 1102.16 

 

 

The present section explored the integration of maintenance tasks and their associated constraints 

into a fleet assignment model to schedule train services. An Integer Linear Programming (ILP) was 

introduced, based on the previous work of Tréfond et al. (2017). The final model is an ILP that 

assigns train units to operational services as well as maintenance tasks in the time interval between 

operational services. The proposed ILP model is tested for an illustrative example and for a case 

study, and it was shown that the proposed model is able to find optimal solutions within reasonable 

time (less than an hour of computational time), providing a schedule for maintenance and 

availability of operations in a train operating company. Moreover, a reliability analysis based on a 

design of computer experiments was conducted to show the influence of the uncertainty associated 

with the time durations of maintenance tasks. It was shown that for the tested cases, the uncertainty 
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associated with maintenance durations did not influence dramatically the optimal value for the 

objective function, and thus, it did not influence the optimal schedule. Nevertheless, for the worst 

scenario no feasible solution was found which means that no feasible schedule exists, and thus, 

under the worst scenario, the high maintenance durations will affect the normal operations and 

cause delays. This method to assess the impact of the uncertainty in maintenance durations is 

used to understand the potential impact in the optimal value of the objective function.  
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3.6 UNCERTAINTY ASSOCIATED WITH INSPECTION  

 

Data acquisition plays a substantial role in determining cost-effective maintenance policies for 

railway wheelsets. Wheelsets deteriorate through time, and a good maintenance strategy should 

keep their condition at an acceptable level by monitoring various important parameters and 

ensuring they are under control. At the same time, it is crucial to accurately measure those 

parameters, so that turning and replacement actions can be undertaken very closely to cost-

effective targets, where costs of losing wheels’ useful life are minimal. In this section, a comparison 

between data acquired from manual (gauge device), laser and turning measurements is presented 

for three wheelset parameters: Flange Thickness (𝐹𝑡), Flange Height (𝐹ℎ) and Flange Slope (𝑞𝑅). 

The main interest lies on the comparison of precision of these measurements: intuitively the 

distribution of each type of measurement (for each parameter) is centred at some target value 

(which should be approximately the same across the different types), and it is desired to know 

whether the variance around the target value is different for manual, laser and/or turning 

measurements. Although the three technologies have not been used complementary, i.e., the 

wheelsets were not measured by the three of them at the same time, if an accurate model can be 

obtained to successfully explain how the statistics change over some distance measure  

(e.g., kilometres since last turning/renewal), then the task can be reduced to an analysis of the 

residuals, which is performed in this case study. 

 

To motivate the research question with a visual example, assume that the distributions of the 

parameters for each of the three measurement types is approximately normal, centred at some 

target value, but with different variances. Then the expected behaviour of the distributions should 

look like the one displayed on Figure 55: 

 
Figure 55: Example of hypothetical distributions for different measurement types. 
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If data exhibited the behaviour on Figure 55, it would be possible to quantify, in terms of financial 

savings, the differences of adopting one technology in lieu of the other(s), i.e., it would be possible 

to answer the following question: can a better precision (less variance) bring savings on 

maintenance costs? The goal of this section is to investigate the actual behavior of data to see if 

there is evidence that allows for this kind of inference regarding the variances of different types of 

measurements. 

 

Data was again acquired from Fertagus that transports passengers in a single line, which extends 

54 kilometers and servers 14 stations. A 17-years interval database, ranging from January 2001 

up to November 2018, is considered. The company operates 18 trains (units). Each unit has 4 cars, 

and each car has eight wheels (i.e. four wheelsets). Figure 56 provides a schematic representation 

of a four-cars unit.  

Figure 56: Schematic representation of a 4-cars unit. Source: the authors. 

 

One parentheses here is that, for this study, instead of considering the 18 unit numbers with the 

above characteristics, 36 unit numbers were considered, depending on the wheelset’s position, 

i.e., the serial numbers 3501 up to 3518 accounted for the first two vehicles (M1 and T1, or 

wheelsets 1-8), and the serial numbers 3551 to 3568 accounted for the last two vehicles (T2 and 

M2, or wheelsets 9-16). The reader should notice the equivalence between serial numbers 3501 

and 3551, or 3502 and 3552, and so on: they correspond to the same unit, but different vehicles 

within the unit. 

 

The database contained the following information: unit number, unit running kilometers (cumulative 

kilometers), measurement type (manual, laser or turning), vehicle type (leader, motor or trailer), 

date, wheelset position (1 up to 16), side of wheel (left or right), technician responsible for the 

measurement, renewal cycle (H1 or H2, with notable differences in the hardness of wheels from 
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one cycle in comparison to the other), Flange Thickness (𝐹𝑡), Flange Height (𝐹ℎ) and Flange Slope 

(𝑞𝑅). Figure 57 provides a schematic representation of the flange thickness and the flange height 

measures and the tread datum position (70 mm measured from the flange back and A = 13 mm for 

UK profiles or A = 10 mm for EN profiles). 

 
Figure 57: Flange Height 𝐹ℎ and Flange Thickness 𝐹𝑡. Source: adapted from Andrade & Stow (2016). 

 

From this original database, it was possible to compute other variables of interest: kst (kilometers 

since last turning),  𝐹𝑡 (change in flange height since last turning due to wear),  𝐹ℎ (change in 

flange height since last turning due to wear),  𝑞𝑅 (change in flange slope since last turning due to 

wear). Table 22 provides an overview of the aforementioned variables as well as some relevant 

descriptive statistics. 

Table 22: Main variables and descriptive statistics. 

Variable Description Type Mean Min Max 

∆𝐹𝑡 Change in the flange thickness (in mm) since last turning due to wear Continuous -0.382 -9.2 8.0 

∆𝐹ℎ Change in the flange height (in mm) since last turning due to wear Continuous 1.50 -7.9 8.0 

∆𝑞𝑅 Change in the flange slope (in mm) since last turning due to wear Continuous -0.488 -6.60 5.30 

𝑘𝑠𝑡 Kilometres since last turning Continuous 109.889 0 248.587 

𝑀 Measurement Type (Manual, Laser or Turning) Nominal - - - 

𝑈 Unit Number (1 up to 36) Nominal - - - 

𝑊 Wheelset Position (1 up to 16) Nominal - - - 

𝑆 Side of the wheel (Left or Right) Nominal - - - 

𝐻 Wheels Renewal Cycle: cycle H1 or cycle H2 (more recent) Nominal - - - 

𝑇 Technician (24 different technicians  Nominal - - - 

 

Because the response variables (change in flange height, in flange thickness, in flange slope) and 

the independent variable 𝑘𝑠𝑡  were calculated based on the difference between the actual 

measurement and the last post-turning one, the analysis was also dependent on having the 

complete turning database, which was not the case. Date ranges for measurements did not 

coincide, with the following ranges being available: manual measurements ranging from July 2001 

to June 2016, laser measurements from February 2017 to December 2018 and turning 

measurements from January 2001 to June 2015. Manual measurements stopped being performed 

when the laser device was acquired, but turning measurements did not stop, although it was not 
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possible to make them all available for the current analysis. Hence, this is taken as one of the 

limitation of the present study. To work around this, some approximations were considered. For the 

kilometers since turning (𝑘𝑠𝑡), it was decided to manually shift the values by bringing them closer 

to the 0 𝑘𝑠𝑡 mark (i.e. they were all being calculated with respect to the last turning observation 

available from 2015, leading to a notably high, and incorrect, value). For the other statistics 

( 𝐹𝑡,  𝐹ℎ and  𝑞𝑅), an average of the values used in different configurations of the turning machine 

were considered. For instance, the 4 different programs for flange thickness allow the operator to 

choose from the following post-turning measurements: 31.5mm, 28.5mm, 30.5mm and 29.5 mm. 

In the absence of a better estimate, the average of those was considered as the post-turning 

standard to calculate all laser statistics (i.e., 30mm). Same reasoning was applied to  𝐹ℎ and  𝑞𝑅 . 

Although these approximations introduce bias to the final results (in comparison to knowing 

precisely the post-turning measurement), this was the only way available to work around this issue, 

although the authors plan to revisit the analysis once more turning data is available. Finally, a last 

correction had to be made to consider a subset of the data: only points with 𝑘𝑠𝑡 < 200,000 km were 

used. This was necessary because the uncertainty on the actual 𝑘𝑠𝑡 values would increase with 

more kilometers and, hence, 200,000 seemed like a good trade-off as, in general, all turning 

interventions are performed before the 200,000 km mark. 

  

Under these corrections, the following exploratory analysis is performed. Figure 58 shows the 

measurements’ histograms for  𝐹𝑡,  𝐹ℎ and  𝑞𝑅. Although the laser category has clearly less data 

than the others (and it was negatively impacted by the lack of post-turning measurements), it still 

seems to behave better than the other two in terms of range values. 

 

 
Figure 58: 𝛥𝐹ℎ, 𝛥𝐹𝑡 and 𝛥𝑞𝑅 histograms per type of measurement (𝑘𝑠𝑡 < 200,000). 
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Next, measurements boxplots across different units (Figures 59-61) are presented. A quick 

inspection reveals that unit-to-unit variance is likely to exist and should be considered in the model. 

 

 
Figure 59: 𝛥𝐹𝑡 boxplots per type of measurement and unit number (𝑘𝑠𝑡 < 200,000). 

 

 
Figure 60: 𝛥𝐹ℎ boxplots per type of measurement and unit number (𝑘𝑠𝑡 < 200,000). 
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Figure 61: 𝛥𝑞𝑅 boxplots per type of measurement and unit number (𝑘𝑠𝑡 < 200,000). 

 

Although the exploratory data analysis plays a substantial role in providing a better understanding 

of the data, it does not allow for inferences regarding the predominance of one type of 

measurement over the others in terms of precision. Hence, a more systematic approach is 

considered next. 

- Statistical modelling  

One of the limitations of this study, as mentioned earlier, is that measurements were made in non-

overlapping time intervals and, thus, assessing the agreement between measurements within the 

three methods is only possible if the different conditions of the wheelsets in each timeframe are 

taken into account. In this study, the latter is done by considering a Linear Mixed Models (LMM) 

approach having kilometres since last turning (𝑘𝑠𝑡) as one of the explanatory variables along with 

some other relevant categorical variables presented on Table 22, namely: Unit Number (U), 

Wheelset Position (W), Side of Wheel (S), Wheel’s Renewal Cycle (H) and Technician (T). 

 

The option for LMM comes from the fact that they are a flexible, albeit simple method to account 

for known differences in the variance of the different groups on a linear model. By treating a 

variable’s effect as random (opposed to fixed), the interest shifts from knowing the performance of 

the various levels of that variable presented on the dataset (think about the performance of different 

Technicians), to knowing the variation among all levels present in the population. A more intuitive 

example would be to consider the Technicians in the dataset simply as operators randomly selected 

from a population. Hence, instead of different “slopes” for each one of the Technicians in the data 

(fixed effects), the random effects approach allows for random intercepts (i.e., different baseline 

response values) for each Technician, where the amount of variation in the average response 
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caused by “Technician” is estimated (random effect) and added to the curve. Further details on 

LMMs are provided in section 3.1. 

 

Therefore, the assumptions for LMM are the same as in any Linear Model: the explanatory 

variables are linearly related to the response, the errors (for each model) have constant variance 

and are independent. It’s also commonly assumed that errors are normally distributed (as above). 

Hence, if the model is doing a good job, no pattern should be seen on the Residuals vs Fitted 

values plot (indicating homogeneity of error variance) and on the plot of Residuals vs 𝑘𝑠𝑡 (a visible 

trend could indicate autocorrelation, for instance). Finally, a normal probability plot of residuals can 

indicate whether the normality assumption holds.  

 

For the purpose of this study, three different approaches can be compared according to some initial 

hypotheses, as follows: 

 

1. The change in the flange statistic has an overall mean and the type of measurement 

variable is not significant in explaining the response.  

2. The change in the flange statistic has an overall mean, but there is variation on this mean 

according to the type of measurement. 

3. The change in the flange statistic has a different mean across the different types of 

measurements. 

Although the approaches above might look similar, they differ in the way the variable “type of 

measurement” (M) variable is considered in the model. More specifically, a) assumes that the final 

model does not have “type of measurement” as one of its explaining variables, b) assumes that 

there is a random effect of “type of measurement” that must be accounted for in the model, and c) 

assumes that “type of measurement” must be treated as a fixed effect in the linear model. In all 

cases, however, the choice of approach is the LMM, as Unit Number and Technician have both 

significant random effects that must be accounted for. 

 

Table 23 summarizes the comparison of the different approaches listed above (a-c) for each 

statistic. The best model is chosen according to the -2 Restricted Log Likelihood (REML) criterion, 

which can be understood as a “goodness-of-fit” criterion suitable for models including random 

effects. The final selection comes from an exhaustive search, meaning that all possible 

combinations of models considering the variables listed on Table 1 were fitted for the specifications 

in approaches a to c. Only the model with the best performance (in terms of REML) for each 

approach and each statistic is displayed on Table 23. In general, all final models included the fixed 

effect of the categorical variables Wheelset Position (W) and Wheel’s Renewal Cycle (H) and the 

cubic polynomial on kst (kst, kst2, kst3), as well as an intercept. The only exception was the model 

for  𝑞𝑅 in approaches b and c, which also included the fixed effect of the categorical variable Side 

of Wheel (S). In terms of random effects, including the ones for Unit Number (U) and Technician 

(T) was associated with a better performance of REML in all listed models.  
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Table 23: Selected models (best REML) for each scenario (a-c) and each statistic. 

Dependent Variable Models Fixed Effects Random Effects REML 

∆𝐹𝑡 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻 𝑈, 𝑇 36.338 

𝑀𝑏 1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻 𝑈, 𝑇,𝑀 35.575 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊,𝐻,𝑀 𝑈, 𝑇 35.546 

∆𝐹ℎ 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻 𝑈, 𝑇 25.945 

𝑀𝑏 1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻 𝑈, 𝑇,𝑀 23.208 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊,𝐻,𝑀 𝑈, 𝑇 23.187 

∆𝑞𝑅 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻 𝑈, 𝑇 34.112 

𝑀𝑏 1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻, 𝑆 𝑈, 𝑇,𝑀 33.288 

𝑀  1, 𝑘𝑠𝑡, 𝑘𝑠𝑡2, 𝑘𝑠𝑡 ,𝑊, 𝐻,𝑀, 𝑆 𝑈, 𝑇 33.269 

 

A quick inspection on Table 23 reveals that, for all statistics, the model associated with the best 

REML performance was model c, where the variable M (type of Measurement) is treated as a fixed 

effect in the model, i.e., the change in the flange statistic has a different mean across the different 

types of measurements. Although the results for the model b (where M is treated as a Random 

Effect) were very similar (in terms of REML), the analysis will proceed by considering only the 

winner in terms of REML. A direct consequence of this, as it should be noted by the reader, is that 

the initial hypothesis that the distributions of the measurements’ types were centred at the same 

target value will not be further worked on. The working hypothesis becomes that the targets are 

different (although they may still be close to each other). However, there is a lot of uncertainty on 

this hypothesis, since (as it will be shown in the residuals plots in the next sections), despite the 

means being pointed out as different in the final model (i.e., their fixed effects are statistically 

significant at 5% significance level), the relative spread (or difference) of the means for each type 

of measurement vs the residuals for each group is not sufficiently large. In other words, the 

residuals plots do not show the means located at very different points with residuals very close to 

the mean values for each group (which would indicate that the means were different). Instead, the 

pattern seen is: mean values close to each other with large dispersion (or residuals spread), which 

makes the conclusion of different means worth to be further investigated. The latter analysis will be 

revisited when turning data is completely available. In any case, the interest here still lies on the 

study of the dispersion around the target values. Thus, for now, the following sections describe the 

results for the best models in more detail. 

 

- Change in Flange Thickness due to wear (∆𝐹𝑡) 

The first dependent variable of interest is the change in flange thickness due to wear,  𝐹𝑡. Table 

24 provides the estimates for the parameters of the final model 𝑀 . 
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Table 24: Estimates for the parameters of (best REML) model for ∆𝐹𝑡 

 
As mentioned earlier, the variability in the response  𝐹𝑡  is explored through a LMM approach, 

treating the type of measurement (M) variable as fixed. All fixed effects estimates displayed on 

Table 24 above are significant at a 5% significance level and the REML linked to this model is 

35,546. The random effect associated with Technician accounts for about 7% of total variance, 

whereas the one associated with Unit Number accounts only for about 2.4%. Hence, measurement 

noise is still a big component of the model’s total variance. It is worth looking at the residuals per 

measurement type, which are presented on Figure 62. 

 

 
Figure 62: 𝛥𝐹𝑡 - Analysis of Residuals per Measurement Type. 

 

The difference between the fitted means is clearly small compared to the spread of residuals. This 

confirms that much of the variability in the data is not explained solely by the types of 
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measurements. It’s interesting, thus, to look at the residuals per categorical variables (different 

models), which is displayed on Figure 63. 

 

 
Figure 63: 𝛥𝐹𝑡 - Analysis of Residuals per Model. 

 

Figure 63 lacks the 3 first boxplots for Laser measurements because all laser measurements were 

made after the renewal took place, i.e. they were all made under the category “H2” of renewal 

cycle. Indeed, as Figure 63 suggests, variability was higher among measurements from cycle “H1”. 

It’s worth investigating this further in the future. Other than this, the above plot does not add too 

much information (in comparison to the former) and it will be omitted for the other responses. 

 

Figures 62 and 63 also reveal that, although the interquartile ranges for the residuals of different 

measurement types are similar, outliers are more frequent in manual and turning measurements. 

Since those measurements are highly dependent on the Technician’s work (at least intuitively), and 

the random effect associated with Technician was significant, it’s interesting to display the residuals 

of those stratified by Technician as well, as shown on Figure 64. 
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Figure 64: 𝛥𝐹𝑡 - Analysis of Manual and Turning Residuals per Technician. 

 

When the underlying model is assumed to hold, there is a relevant effect of the Technicians’ work. 

Looking at Figure 64, though manual and turning measurements have a much larger number of 

observations, there is also a large presence of outliers, which is not desired as these could possibly 

trigger false maintenance alarms. Laser measurements, on the other hand, are not impacted by 

the Technicians’ work and the device precision is very high. Thus, although impacted by the fewer 

number of observations in the database, laser measurements seem less likely to produce outliers 

and (possible) false maintenance alarms.  

 

The same analysis can be repeated for the change in flange height due to wear,  𝐹ℎ. Table 25 

provides the estimates for the parameters of the final model 𝑀 . Again, all fixed effects displayed 

are significant at a 5% significance level and the REML linked to this model is 23.187. 
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Table 25: Estimates for the parameters of (best REML) model for ∆𝐹ℎ 

 
For  𝐹ℎ, the random effect associated with Unit Number accounts only for about 3.3%, although 

here Technician’s random effect accounts for about 22.8% of total variance, very different from 

what was seen on  𝐹𝑡 analysis. Still, measurement noise is a big component of the model’s total 

variance. The residuals per measurement type are presented on Figure 65. 

 

 
Figure 65: 𝛥𝐹ℎ - Analysis of Residuals per Measurement Type. 
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Although Laser residuals present a bigger interquartile range, the pattern of outliers in Manual and 

Turning measurements still seems to be present. A comparison of the residuals for manual and 

turning measurements per Technician is presented on Figure 66. 

 

 
Figure 66: 𝛥𝐹ℎ - Analysis of Manual and Turning Residuals per Technician. 

 

When the underlying model is assumed to hold, the random effects of Technicians are even more 

significant than those found for the  𝐹𝑡 analysis. The conclusions are similar: although manual and 

turning measurements have a much larger number of observations, there is also a large presence 

of outliers, negatively impacting the precision of those measurements. Laser measurements seem 

to be less susceptible to the presence of outliers, and hence, more robust against false 

maintenance alarms. 

 

The last analysis is on the change in Flange Slope due to wear,  𝑞𝑅 . Table 26 provides the 

estimates for the parameters of the final model 𝑀 , this time with the addition of the categorical 

variable “Side of Wheels” (S), which was shown to improve REML. Again, all fixed effects displayed 

are significant at a 5% significance level and the REML linked to this model is 33.269. 
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Table 26: Estimates for the parameters of (best REML) model for ∆𝑞𝑅

 

For  𝑞𝑅, the random effect associated with Unit Number accounts only for about 2.5% and for 

Technician only about 6.5% of total variance, somewhat like  𝐹𝑡  analysis. The residuals per 

measurement type are presented on Figure 67. 

 
 

Figure 67: 𝛥𝑞𝑅 - Analysis of Residuals per Measurement Type. 

 

And the corresponding comparison of manual and turning residuals per technician is presented on 

Figure 68: 
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Figure 68: 𝛥𝑞𝑅 - Analysis of Manual and Turning Residuals per Technician. 

 

Again, assuming that the underlying model is true, the conclusions are very similar to the ones 

made for  𝐹𝑡  and  𝐹ℎ . Laser measurements seem to be less susceptible to the presence of 

outliers, and hence, more robust against false alarms for maintenance. 

 

This section presented a systematic approach, using Linear Mixed Models, to compare the 

variances of types of measurement in the context of railway wheelsets maintenance strategies and 

in terms of three main statistics (responses):  𝐹𝑡,  𝐹ℎ and  𝑞𝑅. The goal was to be able to make 

inferences about the quality of measurements as a matter of the dispersion around the mean/target 

values. Some interesting findings are related to the best model (in terms of REML criterion) being 

the one treating the variable “type of measurement” as a fixed effect, meaning that the best models 

(for all three responses) were the ones considering different slopes based on measurement types 

and some other categorical variables, which was not intuitively expected. The next relevant result 

showed that the behavior of the residuals (assuming the underlying models are correct) did not 

exhibit the expected pattern, i.e., they did not allow for inference that the measurements differ 

significantly from one type to another, despite means being different according to the selected 

model. However, another important result came from the observation of residual plots stratified by 

Type of Measurements: the presence of outliers was more common in the manual and turning 

cases, where measurements are dependent on the work of Technicians. Moreover, the random 

effect associated with Technician was significant in all models, and plotting the residuals by 

Technician revealed that part of the dispersion can be explained by the human work and that there 

are notable differences from one Technician to the others. 

 

However, one of the limitations of this study, as mentioned several times, was the lack of turning 

measurements to compute the actual 𝑘𝑠𝑡,  𝐹𝑡 ,  𝐹ℎ  and  𝑞𝑅  for the laser measurements. The 

authors have made several approximations, but ultimately, when turning data is available, it is worth 
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revisiting the analysis, as to confirm the results obtained and further investigate the outcomes that 

were not initially expected. 
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4. CONCLUSIONS  

 

In the present report, a major division in Condition-Based Maintenance (CBM) model application 

was made between Part I on prognosis using on-train diagnostic data and Part II on decision 

support based on condition data. Several statistical techniques and decision support tools within 

the CBM model were applied to different subsystems or components of the vehicle system.   

 

In part I, an overall discussion on data collection and formatting was provided, becoming evident 

that in order to apply the proposed CBM framework and techniques a strong and robust information 

system has to be available within railway organisations. A discussion on failure/event of interest is 

provided, namely on the selection, characterisation and associated prognostic model for case study 

from a regional EMU. This suggests that CBM implementation requires databases with 

comprehensive classification of event, failures and resulting maintenance actions to take full 

advantage of the proposed techniques. Moreover, by analysing a case study on high speed EMU, 

relevant CBM techniques and frameworks were explored such as: the diagnostic data architecture, 

data science methods with engineering design and other machine learning techniques. This also 

showed that CBM full implementation requires a comprehensive diagnostic architecture, rich 

enough to take advantage of the proposed techniques.  

 

In part II, a full case study on wheelset maintenance is provided for the Fertagus train operating 

company. By analysing and focusing on the wheelset component, different techniques were 

explored to support decision making, namely: statistical modelling of wheelset wear for the 

Fertagus case study and for the London Underground case study, survival modelling of wheelset 

damage leading to a Markov Decision Process (MDP) approach to derive an optimal map of a 

maintenance turning strategy for the wheelset. Such predictive techniques show that obtaining 

reliable inspection or condition data are crucial to support full application of such techniques. 

Furthermore, supporting maintenance decisions within a tactical maintenance plan and operational 

maintenance scheduling are comprehensive activities that require that maintenance and inspection 

records are digitalized to facilitate an easier implementation of CBM model within railway 

organisations. Finally, reliable inspection devices are crucial to limit uncertainty associated with 

measuring condition data, suggesting that CBM implementation requires reliable sensors  

(e.g. laser equipment for the wheelset condition and profile measurements). 

 

The following sections explore CBM implementation (section 4.1) and finalises with main 

conclusions and further research (section 4.2). 

 

4.1 TOWARDS CBM IMPLEMENTATION  

 

It is crucial to discuss how the CBM techniques and proposed framework can be implemented for 

other case studies and in other railway organisations. By applying the case studies, explored in 

Parts I and II, such techniques and main lessons can be highlighted (in subsection 4.1.1) and a 
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discussion on guidelines to CBM implementation is also provided (in subsection 4.1.2). Finally, 

barriers to CBM implementation are identified in subsection 4.1.3. 

 

4.1.1 LESSONS FROM CASE STUDIES  

 

Several lessons can be taken from the application of the CBM techniques and models to the cases 

studies on diagnostic data (explored in Part I) and condition data (explored in Part II). A first 

important lesson is that the CBM techniques and framework revealed to be flexible enough to be 

applied to diagnostic and condition data, and to different components and subsystems within the 

railway vehicle system. This flexible nature of the CBM techniques suggests that the future 

application to other systems and other components would not be difficult, with the natural 

adaptations specific to each of these systems.  

 

For instance, statistical models such as Linear Mixed Models (LMMs) and Survival Models (SM) 

are very flexible to take into account and test the significance of any controlling variable that the 

modeller and/or practitioner thinks that might influence the life-cycle or the deterioration of a given 

system. Moreover, the Markov Decision Process (MDP) provides a robust technique to derive an 

optimal maintenance strategy map (i.e. showing which decision should be made depending on the 

exact condition of that system). For the wheelset turning strategy, this optimal maintenance map 

provides a strategy, based on the kilometres since last turning and on the diameter of the wheelset, 

supporting maintenance technicians to make turning decisions from a life-cycle perspective and 

based on the inspection records and observed trends in wear and damage. It should be mentioned 

that the Transitions Matrices were estimated using statistical techniques and survival statistical 

modelling to estimate hazard functions and associated transition probabilities. Therefore, the 

application of MDP for other components might require a more extensive knowledge of main failure 

modes and main quality and performance indicators specific to that component.  

 

Regarding maintenance planning models, it was showed that such Integer Linear Programming 

(ILP) formulations can easily integrate the complexity of maintenance planning in a medium-term 

horizon, adding technical constraints associated with depot and its configuration, human resources, 

amount of work, etc. These comprehensive models were detailed for the Fertagus case study, and 

it would not be difficult to adapt them to other case studies/railway companies. It was shown that 

the shunting costs represent a major fraction of the costs. Moreover, and regarding the operational 

maintenance scheduling models, it was shown that the assignment of train units to normal services 

and maintenance tasks can provide additional flexibility to overcome potential delays or uncertainty 

associated with maintenance durations. These two maintenance decision support models were 

applied to the Fertagus case study: i) a tactical maintenance planning model to find an optimal 

maintenance plan and ii) an operational maintenance scheduling model to assign train units to daily 

services and maintenance tasks to find an optimal schedule. Both models support the assessment 

of different maintenance intervals and inspection intervals in the overall maintenance plan, and 

they can support the impact assessment in Deliverable D4.2.   
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The benefits of correlating the diagnostic event data with failure records in the machine learning 

approaches (such as a Recurrent Neural Network) was demonstrated in Part I. In this supervised 

method, information on failures that result in maintenance are used as a resource to teach the 

model the sequence of events or patterns leading up to a failure. Using this information, it is 

possible to provide an earlier warning of an imminent failure to allow maintenance plans to be 

adjusted accordingly.    

 

4.1.2 GUIDELINES TO IMPLEMENTATION 

 

Shifting from current maintenance practices to Condition-Based Maintenance (CBM) strategies is 

not an easy task for railway organisations. In fact, the full application of these CBM techniques may 

require specific training to different human resources, which play different roles in the inspection 

and maintenance processes (supervisors, technicians, planners, etc.). In particular, it is crucial to 

facilitate interpretation of optimal decision maps and to ensure the correct application of several 

statistical techniques.  

 

Statistical techniques can only be applied if there are rich and reliable datasets within the 

organisation with inspection, diagnostic, failure, maintenance and renewal records. Digitalisation 

of such records is fundamental to allow an easier implementation. Sometimes, some calibrations 

or interpretation is needed and some sort of feedback is required from maintenance technicians, 

supervisors or planners, to take full advantage from the records, and potentially remove unreliable 

part of the dataset.  

 

Along with the reliability, the accessibility of the data acquired from the different inspection or  

on-train systems is also an important factor. If the data is not made available to the various 

assessment methods in the required time frame the potential benefits, in terms of provided enough 

time and information to support maintenance planning, will be reduced. Ideally, the assessment 

methods would be granted periodic access to the data through a central server/database or a cloud-

based system. 

 

4.1.3 BARRIERS 

 

The full application of these techniques may require specific training to different human resources, 

which play different roles in the inspection and maintenance processes (supervisors, technicians, 

planners, etc.). In particular, it is crucial to facilitate interpretation of optimal decision maps and to 

ensure the correct application of several statistical techniques. Moreover, skills in data science may 

also be an advantage to speed up the process of implementing such CBM model in railway 

organizations. 

 

One important limitation towards the full implementation of the CBM techniques and framework is 

the digitalisation of inspection, maintenance and failure records and the availability of long series 
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of historic data, both for diagnostic and/or condition. On the one hand, machine learning and 

data-driven approaches require training subsets and long series of past records can provide that. 

On the other hand, such records provide a window of observation and validity for predictions. 

Outside this window of observation, such predictive approaches may fail, and thus, decision 

supporting is also only valid in this observation window.  

 

It should also be mentioned that specific characteristics of the fleets analysed and associated case 

studies (e.g. size, depot configuration, services) may limit the straightforward CBM implementation 

of such techniques to other train fleets, and thus, some sort of adaptation might be required. It is 

also important to mention that larger sizes of the fleet may limit the performance of the integer 

linear programming techniques used in the decision supporting techniques. 

 

In relation to the application of on-train diagnostic data in the CBM model; whilst most modern 

rolling stock will be equipped with a diagnosis system, which collects faults, events and operational 

data, the functionality of these systems may vary considerably (e.g. safety critical systems, 

environment variables). Therefore, the level of detail collected by one fleet of trains may not be 

different for other fleets and therefore the assessment methods might need to be tailored to specific 

fleets.  

4.2 MAIN CONCLUSIONS AND FURTHER RESEARCH  

 
The present report explored applications of the CBM model and its techniques to support train 

operating companies to shift their current maintenance strategies to condition-based maintenance 

strategies. It aimed to apply the CBM techniques and framework proposed in Deliverable D2.2 for 

several case studies. Such application showed some success, demonstrating the wide variety 

systems and components (within the railway vehicle systems) in which it can be applied.  

 

Part I explored the use of machine learning techniques to predict sequences in on-train diagnostic 

data which could provide an indication of an imminent component/system failure. When using the 

techniques in a supervised method, where the sequence of diagnostics events are correlated to 

maintenance actions, the model is able to provide an early indication of an imminent failure based 

on the training dataset used in the project. Whist the unsupervised method was good in extracting 

trends and patterns from the diagnostics data, further interpretation of the outputs is required in 

order to link these patterns to specific failures and resulting maintenance actions. The case studies 

conducted in Part I also highlighted the importance in the quality and volume of data available for 

input in to the model. 

 

Part II explored decision support based on condition data, with the specific case study on wheelset 

maintenance. By using Linear Mixed Models, it was possible to estimate the evolution of the 

different geometrical indicators, by controlling for the effect of different explaining variables. A 

comparison with London Underground inspection wheelset data suggested that such models can 

be easily adapted to different fleets. It provided a more comprehensive understanding on the topic 

of exploring wear trajectories of railway wheelsets, finding statistical patterns consistent with other 
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fleets. A survival analysis estimated the survival probabilities associated with damage occurrence 

as the kilometres since last turning/renewal increases. A Markov Decision Process (MDP) 

approach provided an optimal decision map to trigger preventive turning depending on the current 

wheelset diameter and the kilometres since last turning. Two maintenance decision support models 

were applied to the Fertagus case study: i) a tactical maintenance planning model to find an optimal 

maintenance plan and ii) an operational maintenance scheduling model to assign train units to daily 

services and maintenance tasks to find an optimal schedule. Both models support the assessment 

of different maintenance intervals and inspection intervals in the overall maintenance plan, and 

they can support the impact assessment in Deliverable D4.2. Finally, an assessment of uncertainty 

associated with different inspection techniques was conducted, showing that laser inspection 

provides a lower number of outliers and thus more reliability in wheelset inspection.       

 

It is very important to mention that the present research stream targeted TRL level 2-3 for the 

application of the CBM model, with a proof of concept and feasibility of such models within the 

normal practice and procedures in railway organisations such as the Fertagus train operating 

company. Further research needs to target higher TRL levels by integrating such techniques in a 

more robust way.      
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APPENDIX A – State Space division and transition probabilities 

 

A1 State space division and transition probabilities for the ‘Do nothing’ action (a = 1)  

Note: grey colour represents the effect of damage. 
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A2 State space division and transition probabilities for the ‘Renewal’ action (a = 2)  

Note: grey colour represents the effect of damage. 
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A3 State space division and transition probabilities for the ‘Turning’ action (a = 3)  

Note: grey colour represents the effect of damage. 
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Appendix B – Tables with information on the case study of a Portuguese train operating 

company. 
 

Table B.1: Information concerning stations, their names number and minimal turning times.  

Station Name Station Number, 𝑠 
Minimal Turning Time, 

𝑇𝑀  (min) 

Roma-Areeiro 1 1 

Entrecampos 2 1 

Sete-Rios 3 1 

Campolide 4 1 

Pragal 5 1 

Corroios 6 1 

Foros de Amora 7 1 

Fogueteiro 8 1 

PMC (depot) 9 1 

Coina 10 1 

Penalva 11 1 

Pinhal-Novo 12 1 

Venda do Alcaide 13 1 

Palmela 14 1 

Setúbal 15 1 

 

 

 
Table B.2: Pairs of stations between which there can exist dead-headings.  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1

9 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1

10 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

s'

s 

𝑾 ,  
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Table B.3: Associated lengths between pairs of stations. 

 
 

 
Table B.4: Associated durations between pairs of stations.  

 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1.13 2.84 4.04 11.68 16.78 19.38 22.12 25.6 27.32 32.62 41.42 45.23 49.33 54.16

2 1.13 0 1.71 2.91 10.55 15.65 18.25 20.99 0 26.19 31.49 40.29 44.1 48.2 53.03

3 2.84 1.71 0 1.2 8.84 13.95 16.55 19.28 0 24.49 29.79 38.59 42.39 46.49 51.32

4 4.04 2.91 1.2 0 7.65 12.75 15.35 18.09 0 23.29 28.59 37.39 41.19 45.29 50.12

5 11.68 10.55 8.84 7.65 0 5.1 7.7 10.44 0 15.64 20.94 29.74 33.54 37.64 42.47

6 16.78 15.65 13.95 12.75 5.1 0 2.6 5.34 0 10.54 15.84 24.64 28.44 32.54 37.37

7 19.38 18.25 16.55 15.35 7.7 2.6 0 2.74 0 7.94 13.24 22.04 25.84 29.94 34.77

8 22.12 20.99 19.28 18.09 10.44 5.34 2.74 0 0 5.2 10.5 19.3 23.1 27.2 32.03

9 25.6 0 0 0 0 0 0 0 0 1.7 0 0 0 0 28.6

10 27.32 26.19 24.49 23.29 15.64 10.54 7.94 5.2 1.7 0 5.3 14.1 17.9 22 26.83

11 32.62 31.49 29.79 28.59 20.94 15.84 13.24 10.5 0 5.3 0 8.8 12.6 16.7 21.53

12 41.42 40.29 38.59 37.39 29.74 24.64 22.04 19.3 0 14.1 8.8 0 3.8 7.9 12.73

13 45.23 44.1 42.39 41.19 33.54 28.44 25.84 23.1 0 17.9 12.6 3.8 0 4.1 8.93

14 49.33 48.2 46.49 45.29 37.64 32.54 29.94 27.2 0 22 16.7 7.9 4.1 0 4.83

15 54.16 53.03 51.32 50.12 42.47 37.37 34.77 32.03 28.6 26.83 21.53 12.73 8.93 4.83 0

s'

s 

 𝑾 ,  

(km)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 16 0 0 22 24 26 0 0 0 0 45

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 22 0 0 0 0 0 0 0 0 5 0 0 0 0 21

9 24 0 0 0 0 0 0 0 0 2 0 0 0 0 21

10 26 0 0 0 0 0 0 5 2 0 0 0 0 0 17

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 45 0 0 0 0 0 0 21 21 17 0 0 0 0 0

s'

s 

𝑫𝑾 ,  

(min)
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Table B.5: Constants used.  

Constant Unit Value 

𝑁𝑈 - 17 

𝑁𝑆 - 15 

𝑁𝑇 - 790 

𝑁  day 5 

𝑁𝑀 - 14 

𝐿𝑁 - 10000 

𝑃𝑊 - 850 

𝑃𝑇𝐻𝑂𝑀 - 300 

𝑃𝑇𝑍𝑀 - 850 

 
Table B.6: Information about tasks (the complete is provided in the electronic version).  

Task (𝑻𝒊) 𝑫𝑬𝑴𝒊  𝑨𝑷𝒊 𝑺𝒅𝒊 𝑺𝒂𝒊 𝑫𝒅𝒊 (min) 𝑫𝒂𝒊 (min) 

1 1 2 1 15 343 401 

2 2 2 15 1 418 476 

3 2 2 1 10 483 516 

4 2 2 10 1 523 556 

5 2 2 1 10 563 596 

6 2 2 10 1 1053 1086 

7 2 2 1 15 1093 1151 

8 1 2 15 1 1168 1226 

9 1 2 1 10 1233 1266 

10 1 2 10 1 1283 1316 

11 1 2 1 10 1333 1366 

12 1 2 15 15 1152 1258 

13 1 2 15 1 388 446 

14 1 2 1 10 453 486 

15 1 2 15 1 508 566 

16 1 2 1 10 573 606 

17 2 2 10 1 963 996 

18 2 2 1 15 1003 1061 

19 2 2 15 1 1078 1133 

20 2 2 1 10 1143 1176 

(...) 

817 0 0 12 12 0 0 

818 0 0 13 13 0 0 

819 0 0 14 14 0 0 

820 0 0 15 15 0 0 
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Table B.7: Maintenance actions that need to be performed on the planning period.  

 𝑀𝑘,𝑚 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑘 

1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table B.8: Duration and working load (amount of work) of each maintenance action.  

Maintenance Action, 𝒎 𝑴𝑻𝒎 (min) 𝑨𝑾𝒎 (min) 

1 150 744 

2 420 1680 

3 210 840 

4 210 840 

5 276 840 

6 186 744 

7 186 744 

8 186 744 

9 186 744 

10 186 744 

11 420 840 

12 53 210 

13 53 210 

14 60 60 
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Appendix C – Output of 1-day fleet assignment from operational scheduling model for Portuguese train operating company  
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